Neo4j Graph Data Science Docs
Docs
Neo4j DBMS
  • Getting Started
  • Operations
  • Migration and Upgrade
  • Status Codes
  • Java Reference
  • Kerberos Add-on
Neo4j Aura
  • Neo4j Aura
  • Neo4j AuraDB
  • Neo4j AuraDS
Neo4j Tools
  • Neo4j Bloom
  • Neo4j Browser
  • Neo4j Data Importer
  • Neo4j Desktop
  • Neo4j Ops Manager
Neo4j Graph Data Science
  • Neo4j Graph Data Science Library
Cypher Query Language
  • Cypher
  • Cypher Cheat Sheet
  • APOC Library
Create applications
  • Python Driver
  • Go Driver
  • Java Driver
  • JavaScript Driver
  • .Net Driver
  • Neo4j GraphQL Library
  • HTTP API
  • OGM Library
  • Spring Data Neo4j
  • Neo4j Connector for Apache Spark
  • Neo4j Connector for Apache Kafka
Labs
arrows.app
  • Details
  • arrows.app
APOC Extended
  • Documentation
  • Developer Guide
Halin
ETL Tool
  • Details
  • Documentation
Neo4j Migrations
  • Details
  • Documentation
Neo4j Plugin For Liquibase
  • Details
  • Documentation
Neosemantics
  • Getting Started
  • Documentation
Neo4j Helm
  • Details
  • Documentation
NeoDash
  • Details
  • Documentation
neomodel
  • Details
  • Documentation
Get Help
GraphAcademy
  • Free, Self Paced Training
  • Certification
Community Forum
Discord Chat
Knowledge Base
Neo4j Developer Blog
Neo4j Videos
Get Started Free
Search
Product Version
    • The Neo4j Graph Data Science Library Manual v2.4
    • Introduction
    • Installation
      • Supported Neo4j versions
      • Neo4j Desktop
      • Neo4j Server
      • Neo4j on Docker
      • GDS Enterprise Edition
      • Configure Apache Arrow server
      • System Requirements
    • Common usage
      • Memory Estimation
      • Projecting graphs
      • Running algorithms
      • Logging
      • Monitoring system
      • System Information
    • Graph management
      • Graph Catalog
        • Projecting graphs using native projections
        • Projecting graphs using Cypher (deprecated)
        • Projecting graphs using Cypher
        • Projecting graphs using Apache Arrow
        • Projecting a subgraph
        • Random walk with restarts sampling
        • Common Neighbour Aware Random Walk sampling
        • Random graph generation
        • Listing graphs
        • Check if a graph exists
        • Removing graphs
        • Node operations
        • Relationship operations
        • Export operations
        • Apache Arrow operations
      • Node Properties
      • Utility functions
      • Cypher on GDS graph
      • Administration
      • Backup and Restore
    • Graph algorithms
      • Syntax overview
      • Centrality
        • PageRank
        • Article Rank
        • Eigenvector Centrality
        • Betweenness Centrality
        • Degree Centrality
        • Closeness Centrality
        • Harmonic Centrality
        • HITS
        • CELF
      • Community detection
        • Louvain
        • Label Propagation
        • Weakly Connected Components
        • Triangle Count
        • Local Clustering Coefficient
        • K-Core Decomposition
        • K-1 Coloring
        • Modularity Optimization
        • Strongly Connected Components
        • Speaker-Listener Label Propagation
        • Approximate Maximum k-cut
        • Conductance metric
        • Modularity metric
        • K-Means Clustering
        • Leiden
      • Similarity
        • Node Similarity
        • Filtered Node Similarity
        • K-Nearest Neighbors
        • Filtered K-Nearest Neighbors
        • Similarity functions
      • Path finding
        • Delta-Stepping Single-Source Shortest Path
        • Dijkstra Source-Target Shortest Path
        • Dijkstra Single-Source Shortest Path
        • A* Shortest Path
        • Yen’s Shortest Path algorithm
        • Minimum Weight Spanning Tree
        • Minimum Weight k-Spanning Tree
        • Minimum Directed Steiner Tree
        • All Pairs Shortest Path
        • Random Walk
        • Breadth First Search
        • Depth First Search
        • Bellman-Ford Single-Source Shortest Path
      • Node embeddings
        • Fast Random Projection
        • GraphSAGE
        • Node2Vec
        • HashGNN
      • Topological link prediction
        • Adamic Adar
        • Common Neighbors
        • Preferential Attachment
        • Resource Allocation
        • Same Community
        • Total Neighbors
      • Auxiliary procedures
        • Collapse Path
        • Scale Properties
        • One Hot Encoding
        • Split Relationships
        • Random walk with restarts sampling
        • Common Neighbour Aware Random Walk sampling
      • Pregel API
    • Machine learning
      • Pre-processing
      • Node embeddings
        • Fast Random Projection
        • GraphSAGE
        • Node2Vec
        • HashGNN
      • Node property prediction
        • Node classification pipelines
          • Configuring the pipeline
          • Training the pipeline
          • Applying a trained model for prediction
        • Node regression pipelines
          • Configuring the pipeline
          • Training the pipeline
          • Applying a trained model for prediction
      • Link prediction pipelines
        • Configuring the pipeline
        • Training the pipeline
        • Applying a trained model for prediction
        • Theoretical considerations
      • Pipeline catalog
        • Listing pipelines
        • Checking if a pipeline exists
        • Removing pipelines
      • Model catalog
        • Listing models
        • Checking if a model exists
        • Removing models
        • Storing models on disk
        • Publishing models
      • Training methods
        • Logistic regression
        • Random forest
        • Multilayer Perceptron
        • Linear regression
      • Auto-tuning
    • End-to-end examples
      • FastRP and kNN example
    • Production deployment
      • Defaults and Limits
      • Transaction Handling
      • Using GDS and composite databases (formerly known as Fabric)
      • GDS with Neo4j cluster
      • GDS Configuration Settings
      • GDS Feature Toggles
    • Python client
    • Bloom visualization
    • Appendix
      • Operations reference
        • Graph Catalog
        • Graph Algorithms
        • Machine Learning
        • Additional Operations
        • Configuration Settings
      • Migration from Graph Data Science library Version 1.x
        • Common changes
        • Graph projection
        • Graph listing
        • Graph drop
        • Memory estimation
        • Algorithms
        • Machine Learning
      • Migration from Legacy to new Cypher projection
      • Migration from Alpha Cypher Aggregation to new Cypher projection
  • Neo4j Graph Data Science
  • Graph algorithms
  • Auxiliary procedures

Auxiliary procedures

Auxiliary procedures are extra tools that can be useful in your workflow.
The Neo4j GDS library includes the following auxiliary procedures, grouped by quality tier:

  • Production-ready

    • Scale Properties

  • Beta

    • Collapse Path

  • Alpha

    • One Hot Encoding

    • Split Relationships

    • Random Walk With Restarts Sampling

Total Neighbors Collapse Path

Was this page helpful?

© 2023 Neo4j, Inc.
Terms | Privacy | Sitemap

Neo4j®, Neo Technology®, Cypher®, Neo4j® Bloom™ and Neo4j® Aura™ are registered trademarks of Neo4j, Inc. All other marks are owned by their respective companies.

Contact Us →

US: 1-855-636-4532
Sweden +46 171 480 113
UK: +44 20 3868 3223
France: +33 (0) 1 88 46 13 20

Learn

  • Sandbox
  • Neo4j Community Site
  • Neo4j Developer Blog
  • Neo4j Videos
  • GraphAcademy
  • Neo4j Labs

Social

  • Twitter
  • Meetups
  • Github
  • Stack Overflow
  • Want to Speak?