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Introduction: 
Welcome to the World of Graph Technology
So you’ve heard about graph databases and you want to know what all the buzz is about. Are 
they just a passing trend — here today and gone tomorrow – or are they a rising tide your 
business and your development team can’t afford to pass up?

Whether you’re a business executive or a seasoned developer, something — maybe a 
business challenge or a task your current database can’t handle — has led you on the quest 
to learn more about graphs and what they can do.

In this Graph Databases For Beginners ebook, we’ll take you through the basics of graph 
technology assuming you have little (or no) background in the technology. We’ll also include 
some useful tips that will help you if you decide to make the switch to Neo4j.

Before we dive in, what is it that makes graphs not only relevant, but necessary in today’s 
world? The first is its focus on relationships. Collectively we are gathering more data than ever 
before, but more and more frequently it’s how that data is related that is truly important.

Take fraud detection as an example. Financial institutions and insurance companies 
lose billions of dollars every year to fraudsters. But many of them now rely on Neo4j to 
successfully uncover fraud rings by bringing previously hidden relationships to light. 

But it’s not only this focus on relationships that makes Neo4j so powerful. A whiteboard data 
model that’s flexible and scalable to evolve along with your data; an intuitive query language 
that makes writing queries simple; and agility that saves your company valuable time all make 
Neo4j stand out from other NoSQL offerings and traditional relational database (RDBMS) 
technologies. (Are these terms unfamiliar to you? Don’t worry — we’ll explain them in the 
chapters to follow.)

In short, graph databases are the future. And even if you’re just a beginner, it’s never too 
late to get started. We invite you to learn more about this new technology in the pages that 
follow. And as you read, feel free to reach out to us with your questions.

Happy Graphing, 
Bryce, Joy & Rachel
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Chapter 1 
Graphs are the Future

Why You Should Care about Graph Databases
New tech is great, but you operate in a world of budgets, timelines, corporate standards and competitors. You don’t merely replace 
your existing database infrastructure just because something new comes along – you only take action when an orders-of-magnitude 
improvement is at hand.

Graph databases fit that bill, and here’s why:

Performance
Your data volume will definitely increase in the future, but what’s going to increase at an even faster clip is the connections (or 
relationships) between your individual data points. With traditional databases, relationship queries (also known as “JOINs”) will come to 
a grinding halt as the number and depth of relationships increase. In contrast, graph database performance stays consistent even as 
your data grows year over year.

Flexibility
With graph databases, your IT and data architect teams move at the speed of business because the structure and schema of a graph 
data model flex as your solutions and industry change. Your team doesn’t have to exhaustively model your domain ahead of time; 
instead, they can add to the existing structure without endangering current functionality.

Agility
Developing with graph databases aligns perfectly with today’s agile, test-driven development practices, allowing your graph-database-
backed application to evolve alongside your changing business requirements.

What Is a Graph Database? (A Non-Technical Definition)
You don’t need to understand the arcane mathematical wizardry 
of graph theory in order to understand graph databases. On the 
contrary, they’re more intuitive to understand than relational database 
management systems (RDBMS).

A graph is composed of two elements: a node and a relationship. Each 
node represents an entity (a person, place, thing, category or other 
piece of data), and each relationship represents how two nodes are 
associated. For example, the two nodes “cake” and “dessert” would 
have the relationship “is a type of” pointing from “cake” to “dessert.”

Twitter is a perfect example of a graph database connecting 313 million 
monthly active users. In the illustration to the right, we have a small 
slice of Twitter users represented in a graph data model. 

Each node (labeled “User”) belongs to a single person and is connected 
with relationships describing how each user is connected. As we 
can see, Billy and Harry follow each other, as do Harry and Ruth, but 
although Ruth follows Billy, Billy hasn’t (yet) reciprocated.

If the above example makes sense to you, then you’ve already grasped 
the basics of what makes up a graph database.

Standard Big

name: Ruth name: Harry

name: Billy

FOLLOWS
FOLLOWS

FOLLOW
S

FOLLOW
SFO

LL
OW

S

User

User

User

FIGURE 1.1: The connections (relationships) 
between different users (nodes)

https://neo4j.com
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How Graph Databases Work (In a Way You Actually Understand)
Unlike other database management systems, relationships take first priority in graph 
databases. This means your application doesn’t have to infer data connections using things 
like foreign keys or out-of-band processing, like MapReduce. 

The result of using graph databases instead? Your data models are simpler and more 
expressive than the ones you’d produce with relational databases or NoSQL (Not only SQL) 
stores.

There are two important properties of graph database technologies you need to understand:

1. Graph Storage
Some graph databases use “native” graph storage that is specifically designed to store and 
manage graphs, while others use relational or object-oriented databases instead. Non-native 
storage is often slower than a native approach.

2. Graph Processing Engine
Native graph processing (a.k.a. “index-free adjacency”) is the most efficient means of 
processing data in a graph because connected nodes physically “point” to each other in 
the database. However, non-native graph processing engines use other means to process 
Create, Read, Update or Delete (CRUD) operations.

When it comes to current graph database technologies, Neo4j leads the industry as the most 
native when it comes to both graph storage and processing. For more information on native 
versus non-native graph technology, see Chapter 13.

Conclusion: 
Graph Databases Are in More Places Than you Think
The real world is richly interconnected, and graph databases aim to mimic those sometimes-
consistent, sometimes-erratic relationships in an intuitive way. Graph databases are 
extremely useful in understanding big datasets in scenarios as diverse as logistics route 
optimization, retail suggestion engines, fraud detection and social network monitoring.

Graph databases are on the rise, and big data is getting bigger. Your competitors most likely 
aren’t harnessing the power of graph technology to power their applications or analyze their 
big data, so this is your opportunity to step up your game and join leading companies like 
Walmart, eBay and Pitney Bowes. 

That said, it’s a narrow window before your competition learns to use graphs as well. Learn 
to leverage graph databases today and your business retains the competitive advantage well 
past tomorrow.

Your competitors most 
likely aren’t harnessing 
the power of graph 
technology to power 
their applications 
or analyze their big 
data, so this is your 
opportunity to step 
up your game and join 
leading companies like 
Walmart, eBay and 
Pitney Bowes.

https://neo4j.com
https://neo4j.com
https://neo4j.com/case-studies/global-500-logistics/?ref=beginners-ebook
https://neo4j.com/case-studies/global-500-logistics/?ref=beginners-ebook
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=beginners-ebook
https://neo4j.com/use-cases/fraud-detection/?ref=beginners-ebook
https://neo4j.com/use-cases/social-network/?ref=beginners-ebook
http://db-engines.com/en/ranking_trend/graph+dbms
https://www.forbes.com/sites/larrymyler/2015/07/29/big-data-is-a-big-problem-thats-getting-bigger/
https://neo4j.com/case-studies/walmart/?ref=beginners-ebook
https://neo4j.com/case-studies/ebay/?ref=beginners-ebook
https://neo4j.com/case-studies/pitney-bowes/?ref=beginners-ebook
https://neo4j.com/graph-databases-book/?ref=beginners-ebook
https://neo4j.com/graph-databases-book/?ref=beginners-ebook
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Chapter 2   
Why Data Relationships Matter

The Irony of Relational Databases
Relational databases (RDBMS) were originally designed to codify paper forms and tabular 
structures, and they still do this exceedingly well. Ironically, however, relational databases 
aren’t effective at handling data relationships, especially when those relationships are added 
or adjusted on an ad hoc basis.

The greatest weakness of relational databases is that their schema is too inflexible. Your 
business needs are constantly changing and evolving, but the schema of a relational 
database can’t efficiently keep up with those dynamic and uncertain variables. 

To compensate, your development team can try to leave certain columns empty (tech lingo: 
nullable), but this approach requires more code to handle the greater number of exceptions 
in your data. Even worse, as your data multiplies in complexity and diversity, your relational 
database becomes burdened with large JOIN tables that disrupt performance and hinder 
further development.

Consider the sample relational database below.

User
UserID User Address Phone Email Alternate
1 Alice 123 Foo St. 12345678 alice@example.org alice@neo4j.org
2 Bob 456 Bar Ave. bob@example.org
... ... ... ... ... ...
99 Zach 99 South St. zach@example.org

Order
OrderID UserID
1234 1
5678 1
... ...
5588 99

LineItem
OrderID ProductID Quantity
1234 765 2
1234 987 1
... ... ...
5588 765 1

Product
ProductID Description Handling
321 strawberry ice cream freezer
765 potatoes
... ...
987 dried spaghetti

FIGURE 2.1: An example relational database where some queries are inefficient-yet-
doable (e.g., “What items did a customer buy?”) and other queries are prohibitively 
slow (e.g., “Which customers bought this product?”).

Your business needs 
are constantly 
changing and evolving, 
but the schema of a 
relational database 
can’t efficiently 
keep up with those 
dynamic and uncertain 
variables.

https://neo4j.com
https://neo4j.com
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In order to discover what products a customer bought, your developers would need to write several JOIN tables, which significantly 
slow the performance of the application. Furthermore, asking a reciprocal question like, “Which customers bought this product?” 
or “Which customers buying this product also bought that product?” becomes prohibitively expensive. Yet, questions like these are 
essential if you want to build a proper recommendation engine for your transactional application.

At a certain point, your business needs will entirely outgrow your current database schema. The problem, however, is that migrating 
your data to a new schema becomes incredibly effort-intensive.

Why Other NoSQL Databases Don’t Fix the Problem Either
Other NoSQL (or Not only SQL) databases store sets of disconnected documents, values and columns, which in some ways gives 
them a performance advantage over relational databases. However, their disconnected construction makes it harder to harness data 
relationships properly.

Some developers add data relationships to NoSQL databases by embedding aggregate identifying information inside the field of 
another aggregate (tech lingo: they use foreign keys). But joining aggregates at the application level later becomes just as prohibitively 
expensive as in a relational database.

These foreign keys have another weak point too: they only “point” in one direction, making reciprocal queries too time-consuming 
to run. Developers usually work around this problem by inserting backward-pointing relationships or by exporting the dataset to an 
external compute structure, like Hadoop, and calculating the result with brute force. Either way, the results are slow and latent.

Graphs Put Data Relationships at the Center
When you want a cohesive picture of your big data, including the connections between elements, you need a graph database. In 
contrast to relational and NoSQL databases, graph databases store data relationships as relationships. This explicit storage of 
relationship data means fewer disconnects between your evolving schema and your actual database.

In fact, the flexibility of a graph model allows you to add new nodes and relationships without compromising your existing network or 
expensively migrating your data. All of your original data (and its original relationships) remain intact.

With data relationships at their center, graphs are incredibly efficient when it comes to query speeds, even for deep and complex 
queries. In Neo4j in Action, the authors performed an experiment between a relational database and a Neo4j graph database.

Their experiment used a basic social network to find friends-of-friends connections to a depth of five degrees. Their dataset included 
1,000,000 people each with approximately 50 friends. The results of their experiment are listed in the table below:

Depth RDBMS execution time(s) Neo4j execution time(s) Records returned

2 0.016 0.01 ~2,500

3 30.267 0.168 ~110,000

4 1543.505 1.359 ~600,000

5 Unfinished 2.132 ~800,000

FIGURE 2.2: 
A performance experiment run between relational databases (RDBMS) and Neo4j shows that graph databases handle 
data relationships extremely efficiently.

At the friends-of-friends level (depth two), both the relational database and graph database performed adequately. However, as the 
depth of connectedness increased, the performance of the graph database quickly outstripped that of the relational database. It turns 
out data relationships are vitally important.

This comparison isn’t to say other NoSQL stores or relational databases don’t have a role to play (they certainly do), but they fall short 
when it comes to connected data relationships. Graphs, however, are extremely effective at handling connected data.

https://neo4j.com
https://neo4j.com/developer/graph-db-vs-nosql/?ref=beginners-ebook
https://neo4j.com/resources/wp-overcoming-sql-strain/?ref=beginners-ebook
https://neo4j.com/resources/wp-overcoming-sql-strain/?ref=beginners-ebook
https://www.manning.com/books/neo4j-in-action
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Chapter 3 
Data Modeling Basics

What is Modeling Exactly?
Data modeling is an abstraction process. You start with your business and user needs (i.e., what you want your application to do). 
Then, in the modeling process you map those needs into a structure for storing and organizing your data. Sounds simple, right?

With traditional database management systems, modeling is far from simple. After whiteboarding your initial ideas, relational databases 
(RDBMS) require you to create a logical model and then force that structure into a tabular, physical model. By the time you have a 
working database, it looks nothing like your original whiteboard sketch (making it difficult to tell whether it’s meeting user needs).

On the other hand, modeling your data for a graph database couldn’t be simpler. Imagine what your whiteboard structure looks like. 
Probably a collection of circles and boxes connected by arrows and lines, right?

Here’s the kicker: That model you drew is already a graph. Creating a graph database from there is just a matter of running a few lines 
of code.

A Relational Vs. Graph Data Modeling Match-Up
Let’s dive into an example.

In this data center management domain (pictured below), several data centers support a few applications using infrastructure 
like virtual machines and load balancers. We want to create an application that manages and communicates with this data center 
infrastructure, so we need to create a data model that includes all relevant elements:

Database
Server 1

Database
Server 2
(Slave)

Database
Server 3
(Slave)

App 1 App 2 App 3

Server 1 Server 2 Server 3

Rack 1 Rack 2

Load 
Balancer 1

Load 
Balancer 2

VM 11VM 10 VM 20 VM 30 VM 31

User 3

FIGURE 3.1: A sample model of a data center management 
domain in its initial “whiteboard” form.

https://neo4j.com
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Now, for our match-up.

If we were working with a relational database, the business leaders, subject-matter experts 
and system architects would convene and create a data model similar to the image above 
that shows the entities of this domain, how they interrelate and any rules applicable to the 
domain. We would then create a logical model from this initial whiteboard sketch before 
mapping it into the tables and relations we see below.

FIGURE 3.2: The relational database version of our initial “whiteboard” data model. 
Several JOIN tables have been added just so different tables can communicate with 
one another.

AppDatabase

AppId: INTEGER [FK] 
DatabaseId: INTEGER [FK] 

UserApp

UserId: INTEGER [FK] 
AppId: INTEGER [FK] 

User

UserId: INTEGER [PK] 

Rack

RackId: INTEGER [PK] 

Load Balancer

LoadBalancedId: INTEGER [PK]

RackId: INTEGER [FK]

App

AppId: INTEGER [PK] 

VirtualMachineId: INTEGER [FK]

VirtualMachine

VirtualMachineId: INTEGER [PK] 

AppInstanceId: INTEGER 
BladeId: INTEGER [FK]

Server

BladeId: INTEGER [PK]

RackId: INTEGER [FK} 
VirtualMachineId: INTEGER

Database Server

DatabaseID: INTEGER [PK]

In the diagram above, we’ve had to add a lot of complexity into the system to make it fit 
the relational model. First, everywhere you see the annotation FK (tech lingo: foreign key) is 
another point of added complexity.

Second, new tables have crept into the diagram such as “AppDatabase” and “UserApp.” These 
new tables are known as JOIN tables, and they significantly slow down the speed of a query. 
Unfortunately, they’re also necessary in a relational data model.

Now let’s look at how we would build the same application with a graph data modeling 
approach. At the beginning, our work is identical – decision makers convene to produce a 
basic whiteboard sketch of the data model (Figure 3.1).

After the initial whiteboarding step, everything looks different. Instead of altering the initial 
whiteboard model into tables and JOINs, we enrich the whiteboard model according to our 
business and user needs.

Figure 3.3 on the next page shows our newly enriched data model after adding labels, 
attributes and relationships:

"The huge advantage 
with Neo4j was that 
we were able to focus 
on modeling our data 
and how to best serve 
our customers instead 
of agonizing how to 
structure tables and 
JOINs. It also required 
very little coding, so 
we were able to keep 
our focus on our 
customers."

-- Josh Marcus, CTO, 
Albelli

https://neo4j.com
https://neo4j.com
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id: VM 10
status: up/down

VM: Asset
id: VM 11

status: up/down

VM: Asset
id: VM 20

status: up/down

VM: Asset
id: VM 30

status: up/down

VM: Asset
id: VM 31

status: up/down

VM: Asset

id: App 1
status: up/down

App: Asset
id: App 2

status: up/down

App: Asset
id: App 3

status: up/down
name:
User 3

App: Asset

id: Server 1
status: up/down

Server Asset
id: Server 2

status: up/down

Server Asset
id: Server 3

status: up/down

Server Asset

id: Rack 1
status: up/down

Rack Asset
id: Rack 2

status: up/down

Rack Asset

id: LoadBalancer 1
status: up/down

LoadBalancer Asset
id: LoadBalancer 2
status: up/down

LoadBalancer Asset

id: Database Server 1
status: up/down

Database: Asset
id: Database Server 2

status: up/down

Database: Asset
id: Database Server 3

status: up/down

Database: Asset

SLAVE_OF

SLAVE_OF

USES

HOSTED_BYHOSTED_BYHOSTED_BYHOSTED_BY

IN

IN IN IN

ININ

USER_OF

HOSTED_BY

USESUSES

RUNS_ON RUNS_ON RUNS_ON RUNS_ON RUNS_ON

FIGURE 3.3: Our enriched data model with added labels, attributes and relationships.

Why Data Modeling Isn’t a One-Off Activity
It’s easy to dismiss the major differences in data modeling between relational and graph 
databases. After all, data modeling is just an activity you have to complete once at the 
beginning of your application development – right? Wrong.

Systems change, and in today’s development world, they change often. In fact, your 
application or solution might change significantly even in mid-development. Over the lifetime 
of your application, your data model constantly shifts and evolves to meet changing business 
and user needs.

Relational databases – with their rigid schemas and complex modeling process – aren’t 
well fit for rapid change. What you need is a data modeling approach that doesn’t sacrifice 
performance and that supports ongoing evolution while maintaining the integrity of your data.

Now that you know the basics of data modeling, the choice is clear. You need the agile 
approach offered by a graph database not only to create data models quicker, but to adapt 
your data models to the changing needs of an uncertain future.

Systems change, and 
in today’s development 
world, they change 
often. In fact, your 
application or 
solution might change 
significantly even in 
mid-development. 
Over the lifetime of 
your application, your 
data model constantly 
shifts and evolves 
to meet changing 
business and user 
needs.

https://neo4j.com
https://neo4j.com
https://neo4j.com/blog/five-signs-to-give-up-relational-database/?ref=beginners-ebook
https://neo4j.com/blog/five-signs-to-give-up-relational-database/?ref=beginners-ebook
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Chapter 4 
Data Modeling Pitfalls to Avoid
Graph databases are highly expressive when it comes to data modeling for complex problems. 
But expressivity isn’t a guarantee that you’ll get your data model right on the first try. Even 
graph database experts make mistakes and beginners are bound to make even more.

Let’s dive into an example data model to witness the most common mistakes (and their 
consequences) so you don’t have to learn from the same errors in your own data model.

Example Data Model: Fraud Detection in Email Communications
In this example, we’ll examine a fraud detection application that analyzes users’ email 
communications. This particular application is looking for rogue behavior and suspicious 
emailing patterns that might indicate illegal or unethical behavior.

We’re particularly looking for patterns from past wrongdoers, such as frequently using 
blind-copying (BCC) and using aliases to conduct fake “conversations” that mimic legitimate 
interactions. In order to catch this sort of unscrupulous behavior, we’ll need a graph data 
model that captures all the relevant elements and activities.

For our first attempt at the data model, we’ll map some users, their activities and their known 
aliases, including a relationship describing Alice as one of Bob’s known aliases. The result is a 
star-shaped graph with Bob in the center.

FIGURE 4.1: Our first data model attempting to map Bob’s suspicious email activity 
with Alice as a known alias. However, this data model isn’t robust enough to detect 
wrongful behavior.

username:
Charlie

username:
Davina

User

username:
Alice

User

username:
Bob

User

username:
Edward

User

EMAILED CC

BC
C

ALIAS_OF

UserUser

https://neo4j.com
https://neo4j.com
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At first blush, this initial data modeling attempt looks like an accurate representation of Bob’s 
email activity; after all, we can easily see that Bob (an alias of Alice) emailed Charlie while BCC’ing 
Edward and CC’ing Davina. But we can’t see the most important part of all: the email itself.

A beginning data modeler might try to remedy the situation by adding properties to the 
EMAILED relationship, representing the email’s attributes as properties. However, that’s not a 
long-term solution. Even with properties attached to each EMAILED relationship, we wouldn’t 
be able to correlate connections between EMAILED, CC and BCC relationships – and those 
correlating relationships are exactly what we need for our fraud detection solution.

This is the perfect example of a common data modeling mistake. In everyday English, it’s easy 
and convenient to shorten the phrase “Bob sent an email to Charlie” to “Bob emailed Charlie.” 
This shortcut made us focus on the verb “emailed” rather than the email as an object itself. 
As a result, our incomplete model keeps us from the insights we’re looking for.

The Fix: A Stronger Fraud Detection Data Model
To fix our weak model, we need to add nodes to our graph model that represent each of the 
emails exchanged. Then, we need to add new relationships to track who wrote the email and 
to whom it was sent, CC’ed and BCC’ed.

The result is another star-shaped graph, but this time the email is at the center, allowing us 
to efficiently track its relationship to Bob and possibly some suspicious behavior.

FIGURE 4.2: Our second attempt at a fraud 
detection data model. This iteration allows us 
to more easily trace the relationships of who is 
sending and receiving each email message.

username:
Alice

User

username:
Charlie

User

username:
Davina

User

username:
Bob

User

username:
Edward

User

Hi Charlie,...
Kind regards,

Bob

Email

SENT

TO CC

CC

BC
C

https://neo4j.com
https://neo4j.com
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Of course we aren’t interested in tracking just one email but many, each with its own web of interactions to explore. Over time, our 
email server logs more interactions, giving us something like the graph below.

Email
id: 1

content:
email

contents

id: 2
content:

email
contents

id: 5
content:

email
contents

id: 3
content:

email
contents

Email
id: 4

content:
email

contents

username:
Alice

User

username:
Edward

User

username:
Charlie

User

username:
Davina

User

username:
Bob

User

Email EmailEmail

TO

TO

TO SE
N

T
SE

N
T

SENT

BCC

BCCBC
C

SE
N

T

ALIAS_OF

SENT

TO

CC

TO

CC

CC
BCC

TO

TO

FIGURE 4.3: A data model showing many 
emails over time and their various 
relationships, including the sender and 
the direct, CC and BCC receivers.

The Next Step: Tracking Email Replies
At this point, our data model is more robust, but it isn’t complete. We can see who sent and received emails, and we can see the 
content of the emails themselves. Nevertheless, we can’t track any replies or forwards of our given email communications. In the case 
of fraud or cybersecurity, we need to know if critical business information has been leaked or compromised.

To complete this upgrade, beginners might be tempted to simply add FORWARDED and REPLIED_TO relationships to our graph 
model, like in the example below.

username:
Alice

username:
Charlie

User User

Email id:
1234

Email

username:
Davina

User

REPLIED_TO TO

FO
RW

AR
D

ED

FIGURE 4.4: Our updated data model with 
FORWARDED and REPLIED_TO relationships in 
addition to the original TO relationship.

https://neo4j.com
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This approach, however, quickly proves inadequate. Much in the same way the EMAILED relationship didn’t give us the proper 
information, simply adding FORWARDED or REPLIED_TO relationships doesn’t give us the insights we’re really looking for.

To build a better data model, we need to consider the fundamentals of this particular domain. A reply to an email is both a new email and 
a reply to the original. The two roles of a reply can be represented by attaching two labels – Email and Reply – to the appropriate node.

We can then use the same TO, CC and BCC relationships to map whether the reply was sent to the original sender, all recipients or a 
subset of recipients. We can also reference the original email with a REPLY_TO relationship.

The resulting graph data model is shown below.

username:
Alice

User

username:
Bob

User

Reply
Email

id: 8
content: ...

Email

id: 6
content: ...

Email
Reply

id: 7
content: ...

Reply
Email

id: 10
content: ...

Reply
Email

id: 9
content: ...

username:
Davina

User

username:
Charlie

User

AL
IA

S 
O

F

CC

SENT

SENT

SEN
T

SENT

SENT

REPLY TO

REPLY TO

REPLY TO

REPLY TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

TO

FIGURE 4.5: Our updated data 
model with the labels EMAIL and 
REPLY added to appropriate nodes.

Homework: Data Modeling for Email Forwards
Not only can we see who replied to Bob’s original email, but we can track replies-to-replies and replies-to-replies-to-replies, and so on 
to an arbitrary depth. If we’re trying to track a suspicious number of replies to known aliases, the above graph data model makes this 
extremely simple.

Equally important to tracking email replies is tracking email forwards, especially when it comes to leaked business information.

As a data modeling acolyte, your homework assignment is to document how you would model the forwarded email data, tracking the 
relationships with senders, direct recipients, CC’ed recipients, BCC’ed recipients and the original email.

Check your work on pages 61 and 62 of the O’Reilly Graph Databases book found here.

Data modeling has been made much easier with the advent of graph databases. However, while it’s simpler than ever to translate 
your whiteboard model into a physical one, you need to ensure your data model is designed effectively for your particular use case.

There are no absolute rights or wrongs with graph data modeling, but you should avoid the pitfalls mentioned above in order to glean 
the most valuable insights from your data.

https://neo4j.com
https://neo4j.com/graph-databases-book/?ref=beginners-ebook
https://neo4j.com/use-cases/?ref=beginners-ebook
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Chapter 5 
Why a Database Query Language Matters

Why We Need Query Languages 
Up to this point in our beginner’s series, all of our database models have been in the form of 
diagrams like the one below.

Standard BigStandard Big

name: Ian name: Jim

name: Emil

KNOWS

KNOW
SKN

OW
S

Person Person

Person

FIGURE 5.1: Example data model where Emil knows Jim and 
Ian, Ian knows Emil and Jim, and Jim knows Ian and Emil.

Graph diagrams like this one are perfect for describing a graph database outside of any 
technology context. However, when it comes to actually using a database, every developer, 
architect and business stakeholder needs a concrete mechanism for creating, manipulating 
and querying data. That is, we need a query language.

Up until now, the query language used by developers and data architects (i.e., SQL) was 
too arcane and esoteric to be understood by business decision makers. But just as graph 
databases have made the modeling process more understandable for the uninitiated, so 
has a graph database query language made it easier than ever for the common person to 
understand and create their own queries.

Why Linguistic Efficiency Matters 
If you’re not a techie, you might be wondering why a database query language matters at all. 
After all, if query languages are anything like natural human languages, then shouldn’t they 
all be able to ultimately communicate the same point with just a few differences in phrasing? 
The answer is both yes and no.

Let’s consider a natural language example. In English, you might say, “I used to enjoy after-
dinner conversation” while reminiscing about your childhood. In Spanish, this same phrase 
is written as, “Disfrutaba sobremesa.” Both languages express the same idea, but one is far 
more efficient at communicating it.

Up until now, the 
query language 
used by developers 
and data architects 
(i.e., SQL) was too 
arcane and esoteric 
to be understood by 
business decision 
makers. But just as 
graph databases have 
made the modeling 
process more 
understandable for 
the uninitiated, so 
has a graph database 
query language made 
it easier than ever for 
the common person to 
understand and create 
their own queries.
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When it comes to a query language, the linguistics of efficiency are similar. A single query in 
SQL can be many lines longer than the same query in a graph database query language like 
Cypher. (Here’s one great example of efficient mapping from a natural language to Cypher.)

Lengthy queries not only take more time to run, but they also are more likely to include 
human coding mistakes because of their complexity. In addition, shorter queries increase 
the ease of understanding and maintenance across your team of developers. For example, 
imagine if an outside developer had to pick through a complicated query and try to figure out 
the intent of the original developer – trouble would certainly ensue.

But what level of efficiency gains are we talking about between SQL queries and graph 
queries? How much more efficient is one versus another? The answer: Fast enough to make 
a significant difference to your business.

The efficiency of graph queries means they run in real time, and in an economy that runs at 
the speed of a single tweet, that’s a bottom-line difference you can’t afford to ignore.

The Intimate Relationship between Modeling and Querying
Before diving into the mechanics of a graph database query language below, it’s worth noting 
that a query language isn’t just about asking (a.k.a. querying) the database for a particular set 
of results; it’s also about modeling that data in the first place.

We know from previous chapters that data modeling for a graph database is as easy as 
connecting circles and lines on a whiteboard. What you sketch on the whiteboard is what you 
store in the database.

On its own, this ease of modeling has many business benefits, the most obvious of which is 
that you can understand what your database developers are actually creating. But there’s 
more to it: An intuitive model built with the right query language ensures there’s no mismatch 
between how you built the data and how you analyze it.

A query language represents its model closely. That’s why SQL is all about tables and JOINs 
while Cypher is all about relationships between entities. As much as the graph model is more 
natural to work with, so is Cypher as it borrows from the pictorial representation of circles 
connected with arrows that even a child can understand.

In a relational database, the data modeling process is so far abstracted from actual day-to-
day SQL queries that there’s a major disparity between analysis and implementation. In other 
words, the process of building a relational database model isn’t fit for asking (and answering) 
questions efficiently from that same model.

Graph database models, on the other hand, not only communicate how your data is related, 
but they also help you clearly communicate the kinds of questions you want to ask of your 
data model. Graph models and graph queries are just two sides of the same coin. 

The right database query language helps us traverse both sides.

An Introduction to Cypher, the Graph Database Query Language
It’s time to dive into specifics. While most relational databases use a form of SQL as their 
query language, the graph database world is more varied so we’ll look specifically at a single 
graph database query language: Cypher.

(While most frequently used in conjunction with Neo4j, Cypher is currently an open source, 
vendor-neutral and cross-platform query language, thanks to the openCypher project.

Graph database 
models...not only 
communicate how 
your data is related, 
but they also help you 
clearly communicate 
the kinds of questions 
you want to ask of 
your data model. 
Graph models and 
graph queries are just 
two sides of the same 
coin. 
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This introduction isn’t meant to be a reference document for Cypher but merely a high-level overview. 

Cypher is designed to be easily read and understood by developers, database professionals and business stakeholders alike. It’s easy 
to use because it matches the way we intuitively describe graphs using diagrams.

The basic notion of Cypher is that it allows you to ask the database to find data that matches a specific pattern. Colloquially, we might 
ask the database to “find things like this,” and the way we describe what “things like this” look like is to draw them using ASCII art. 

Consider this simple pattern:

FIGURE 5.2: Example data model where 
Emil knows Jim and Ian, Ian knows Emil 
and Jim, and Jim knows Ian and Emil.

Standard BigStandard Big

name: Ian name: Jim

name: Emil

KNOWS

KNOW
SKN

OW
S

Person Person

Person

If we want to express the pattern of this basic graph in Cypher, we would write:

(emil)<-[:KNOWS]-(jim)-[:KNOWS]->(ian)-[:KNOWS]->(emil)

This Cypher statement describes a path that forms a triangle that connects a node we call jim to the two nodes we call ian and 
emil, and that also connects the ian node to the emil node. As you can see, Cypher naturally follows the way we draw graphs on 
the whiteboard.

Now, while this Cypher pattern describes a simple graph structure, it doesn’t yet refer to any particular data in the database. To bind 
the pattern to specific nodes and relationships in an existing dataset, we first need to specify some property values and node labels 
that help locate the relevant elements in the dataset. 

Here’s our more fleshed-out query:

(emil:Person {name:'Emil'})

     <-[:KNOWS]-(jim:Person {name:'Jim'}) 
       -[:KNOWS]->(ian:Person {name:'Ian'}) 
       -[:KNOWS]->(emil)

Here we’ve bound each node to its identifier using its name property and Person label. The emil identifier, for example, is bound to a 
node in the dataset with a label Person and a name property whose value is Emil. Anchoring parts of the pattern to real data in this 
way is normal Cypher practice.

https://neo4j.com
https://neo4j.com/docs/developer-manual/current/cypher/?ref=beginners-ebook
https://en.wikipedia.org/wiki/ASCII_art
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The Beginner’s Guide to Cypher Clauses
(Disclaimer: This section is still for beginners, but it’s definitely developer-oriented. If you’re 
just curious about database query languages in general, skip to the “Other Query Languages” 
section below for a nice wrap-up.)

Like most query languages, Cypher is composed of clauses.

The simplest queries consist of a MATCH clause followed by a RETURN clause. Here’s an 
example of a Cypher query that uses these three clauses to find the mutual friends of a user 
named Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]-
>(c), (a)-[:KNOWS]->(c) 

RETURN b, c

Let’s look at each clause in further detail:

MATCH 
The MATCH clause is at the heart of most Cypher queries. 

Using ASCII characters to represent nodes and relationships, we draw the data we’re interested 
in. We draw nodes with parentheses, just like in these examples from the query above:

(a:Person {name:'Jim'})

(b)

(c)

(a)

We draw relationships using pairs of dashes with greater-than or less-than signs (--> and <--) 
where the < and > signs indicate relationship direction. Between the dashes, relationship 
names are enclosed by square brackets and prefixed by a colon, like in this example from the 
query above:

-[:KNOWS]->

Node labels are also prefixed by a colon. As you see in the first node of the query, Person is 
the applicable label.

The simplest queries 
consist of a MATCH 
clause followed by a 
RETURN clause. We 
draw relationships 
using pairs of dashes 
with greater-than or 
less-than signs (--> 
and <--) where the < 
and > signs indicate 
relationship direction.
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(a:Person … )

Node (and relationship) property key-value pairs are then specified within curly braces, like in 
this example:

( … {name:'Jim'})

In our original example query, we’re looking for a node labeled Person with a name property 
whose value is Jim. The return value from this lookup is bound to the identifier a. This 
identifier allows us to refer to the node that represents Jim throughout the rest of the query. 

It’s worth noting that this pattern

(a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)

could, in theory, occur many times throughout our graph data, especially in a large user set.

To confine the query, we need to anchor some part of it to one or more places in the graph. 
In specifying that we’re looking for a node labeled Person whose name property value is Jim, 
we’ve bound the pattern to a specific node in the graph — the node representing Jim. 

Cypher then matches the remainder of the pattern to the graph immediately surrounding 
this anchor point based on the provided information about relationships and neighboring 
nodes. As it does so, it discovers nodes to bind to the other identifiers. While a will always be 
anchored to Jim, b and c will be bound to a sequence of nodes as the query executes.

RETURN 
This clause specifies which expressions, relationships and properties in the matched data 
should be returned to the client. In our example query, we’re interested in returning the 
nodes bound to the b and c identifiers.

Other Cypher Clauses
Other clauses you can use in a Cypher query include: 

WHERE 
Provides criteria for filtering pattern matching results. 

CREATE and CREATE UNIQUE 
Create nodes and relationships. 

MERGE 
Ensures that the supplied pattern exists in the graph, either by reusing existing nodes and 
relationships that match the supplied predicates, or by creating new nodes and relationships. 

Cypher is intended to 
be easy-to-learn for 
SQL veterans while 
also being easy for 
beginners. At the 
same time, Cypher is 
different enough to 
emphasize that we’re 
dealing with graphs, 
not relational sets.

https://neo4j.com
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DELETE/REMOVE 
Removes nodes, relationships, and properties. 

SET 
Sets property values and labels.

ORDER BY 
Sorts results as part of a RETURN.

SKIP LIMIT 
Skip results at the top and limit the number of results.

FOREACH 
Performs an updating action for each element in a list. 

UNION 
Merges results from two or more queries. 

WITH 
Chains subsequent query parts and forwards results from one to the next. Similar to piping 
commands in Unix. 

If these clauses look familiar – especially if you’re a SQL developer – that’s great! Cypher is 
intended to be easy-to-learn for SQL veterans while also being easy for beginners. (Click here 
for the most up-to-date Cypher Refcard to take a deeper dive into the Cypher query language.)

At the same time, Cypher is different enough to emphasize that we’re dealing with graphs, 
not relational sets.

Other Query Languages
Cypher isn’t the only graph database query language; other graph databases have their own 
means of querying data as well. Many, including Neo4j, support the RDF query language 
SPARQL and the partially-imperative, path-based query language Gremlin. 

Conclusion
Not everyone gets hands-on with their database query language on the day-to-day level; 
however, your down-in-the-weeds development team needs a practical way of modeling and 
querying data, especially if they’re tackling a graph-based problem.

If your team comes from an SQL background, a query language like Cypher will be easy to 
learn and even easier to execute. And when it comes to your enterprise-level application, 
you’ll be glad that the language underpinning it all is build for speed and efficiency.

If your team comes 
from an SQL 
background, a query 
language like Cypher 
will be easy to learn 
and even easier to 
execute. And when 
it comes to your 
enterprise-level 
application, you’ll be 
glad that the language 
underpinning it all is 
build for speed and 
efficiency.
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Chapter 6 
Imperative vs. Declarative Query Languages
The history of programming languages goes back to the beginning of computing, with new 
languages being created for each variation and paradigm. When it comes to databases, two 
well-known paradigms include imperative and declarative query languages.

All too often, the latter is often broadly defined as being any database query language that is 
not imperative. However, to define it in such a manner is too broad.

In this chapter, we will discuss the different features of the imperative and declarative 
database query languages, as each has its individual strengths and weaknesses. Selecting 
which language to use will depend specifically upon your individual situation.

Imperative Query Languages
If the query languages were human archetypes, imperative languages would be the 
micromanaging boss who gives instructions down to the final detail. In the most basic sense, 
imperative query languages are used to describe how you want something done specifically. 
This is accomplished with explicit control in a detailed, step-by step manner; the sequence 
and wording of each line of code plays a critical role.

Some well-known general imperative programming languages include Python, C and Java. In 
the world of graph databases, there aren’t any purely imperative query languages. However, 
both Gremlin and the Java API (for Neo4j) include imperative features. These two options 
provide you with more detailed power over the execution of their task. If written correctly, 
there are no surprises – you will get exactly what you want done.

However, imperative database query languages can also be limiting and not very user-
friendly, requiring an extensive knowledge of the language and deep technical understanding 
of physical implementation details prior to usage. Writing one part incorrectly creates faulty 
outcomes.

As a result, imperative languages are more prone to human error. Additionally, users must 
double-check the environment before and after the query and be prepared to deal with any 
potential erroneous scenarios.

To better illustrate the differences, imagine you have two children: Izzy and Duncan. Izzy 
represents an imperative query language and Duncan the declarative query language.

To get the two children to make their beds, you take differing approaches. For Duncan, it is 
easy. Simply instruct Duncan to make his bed and he will do it however he sees fit. Yet, he 
might make it slightly differently from what you had in mind, especially if you’re a picky parent.

Izzy requires an entirely different process. You must first inform her that she needs both 
sheets and blankets to make her bed, and that those materials can be found on top of 
her bed. Then she requires step-by-step instructions, such as “spread the sheet over the 
mattress” and then “tuck in the edges.”

The final result will be closely similar to Duncan’s (or perhaps, exactly the same). At the end of 
the process, both children have their beds made. 

https://neo4j.com
https://neo4j.com
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Declarative Query Languages
On the other end of the spectrum, declarative database query languages let users express 
what data to retrieve, letting the engine underneath take care of seamlessly retrieving it. They 
function in a more general manner and involve giving broad instructions about what task is 
to be completed, rather than the specifics on how to complete it. They deal with the results 
rather than the process, thus focusing less on the finer details of each task.

Some well-known general declarative programming languages include Ruby, R and Haskell. 
SQL (Structured Query Language) is also a declarative query language and is the industry 
standard for relational databases. In the graph database ecosystem, several query languages 
are considered declarative: Cypher, SPARQL and Gremlin (which also includes some 
imperative features).

Using a declarative database query language may also result in better code than what can be 
created manually, and it is usually easier to understand the purpose of the code written in a 
declarative language. Declarative query languages are also easier to use, as they simply focus 
on what must be retrieved and do so quickly. 

However, declarative languages have their own trade-offs. Users have little to no control over 
how inputs are dealt with; if there is a bug in the language, the user will have to rely on the 
providers of the language to fix the problem. Likewise, if the user wants to use a function that 
the query language doesn’t support, they are often at a loss.

In the previous example of the children, Duncan was able to complete his task in a method 
faster and easier for his parent than Izzy. However, imagine now that you want them to wash 
the dishes.

It is the same process for Izzy: You’d need to walk through each step with her so she can learn 
how the process works. For Duncan, however, we have hit a snag. Duncan has never learned 
how to wash the dishes. You will stay in that impasse with Duncan unless his programming 
engineers decide to teach him how to wash the dishes. (Duncan isn’t like most children.)

Conclusion
This chapter is not meant to pit the two types of database query languages against each 
other; it is meant to highlight the basic pros and cons to consider before deciding which 
language to use for your project. 

You should select the best database query language paradigm for your specific use case. 
Neither paradigm is better than the other; they each have different strengths for software 
development.

If your project requires finer accuracy and control, imperative query languages do the job 
well. If the speed and productivity of the process matter more, declarative languages offer 
the flexibility of getting results without as much effort. Ultimately, the choice depends upon 
your individual use case.

If your project requires 
finer accuracy and 
control, imperative 
query languages do 
the job well. If the 
speed and productivity 
of the process matter 
more, declarative 
languages offer the 
flexibility of getting 
results without 
as much effort. 
Ultimately, the choice 
depends upon your 
individual use case.
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Chapter 7 
Graph Theory & Predictive Modeling
As a more developed field, graph theory (the mathematics behind graph databases) helps us 
gain insight into new domains. Combined with the social sciences, there are many concepts 
that can be straightforwardly used to gain insight from graph data. 

Triadic Closures
One of the most common properties of social graphs is that of triadic closures. This is the 
observation that if two nodes are connected via a path with a mutual third node, there is an 
increased likelihood of the two nodes becoming directly connected in the future. 

In a social setting, a triadic closure would be a situation where two people with a mutual 
friend have a higher chance of meeting each other and becoming acquainted. 

The triadic closure property is most likely to be upheld when a graph has a node A with 
a strong relationship to two other nodes, B and C. This then gives B and C a chance of a 
relationship, whether it be weak or strong. Although this is not a guarantee of a potential 
relationship, it serves as a credible predictive indicator. 

Let’s take a look at this example.
Smaller size

Bob Charlie

Alice

M
ANAGESM

ANAGES

FIGURE 7.1: A graph depicting managerial relationships.

Above is an organizational hierarchy where Alice manages both Bob and Charlie. This is 
rather strange, as it would be unlikely for Bob and Charlie to be unacquainted with one 
another while sharing the same manager. 

As it is, there is a strong possibility they will end up working together due to the triadic 
closure property. This will create either a WORKS_WITH (strong) or PEER_OF (weak) 
relationship between the two of them, closing the triangle – hence the term triadic closure.

Bob Charlie
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PEER_OF

M
ANAGESM

ANAGES

Bob Charlie

Alice

WORKS_WITH

M
ANAGESM

ANAGES

FIGURE 7.2: An example of two different triadic closures.

The triadic closure 
property is most 
likely to be upheld 
when a graph has a 
node A with a strong 
relationship to two 
other nodes, B and 
C. This then gives B 
and C a chance of a 
relationship, whether 
it be weak or strong. 
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Structural Balance
However, another aspect to consider in the formation of stable triadic closures is the quality of the relationships involved in the graph. 
To illustrate the next concept, assume that the MANAGES relationship is somewhat negative while the PEER_OF  and WORKS_WITH 
relationships are more positive. 

Based on the triadic closure property, we can assume that we can fill in the third relationship with any label, such as having everyone 
manage each other, like in Figure 7.3 or the weird situation in Figure 7.4, below:

FIGURE 7.3: Example triadic closure.

Bob Charlie

Alice

MANAGES

M
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ANAGES

Bob Charlie

Alice

WORKS_WITH

W
ORKS_W

ITHM
ANAGES

FIGURE 7.4: Example triadic closure.

However, you can see how uncomfortable those working situations would be in reality. In the second image, Charlie finds himself both 
the peer of a boss and a fellow worker. It would be difficult for Bob to figure out how to treat Charlie – as a fellow coworker or as the 
peer of his boss? 

We have an innate preference for structural symmetry and rational layering. In graph theory, this is known as structural balance.

A structurally balanced triadic closure is made of relationships of all strong, positive sentiments (such as in Figure 7.5) or two 
relationships with negative sentiments and a single positive relationship (Figure 7.6).
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FIGURE 7.5: A structurally balanced triadic 
closure with relationships made of strong, 
positive sentiments. 

FIGURE 7.6: A structurally balanced triadic 
closure with two relationships with negative 
sentiments and a single positive relationship.
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Balanced closures help with predictive modeling in graphs. The simple action of searching 
for chances to create balanced closures allows for the modification of the graph structure for 
accurate predictive analysis.

Local Bridges
We can go further and gain more valuable insight into the communications flow of our 
organizations by looking at local bridges. These refer to a tie between two nodes where the 
endpoints of the local bridge are not otherwise connected, nor do they share any common 
neighbors. You can think of local bridges as connections between two distinct clusters of the 
graph. In this case, one of the ties has to be weak. 

For example, the concept of weak links is relevant in algorithms for job search. Studies have 
shown that the best sources of jobs come from looser acquaintances rather than close 
friends. This is because closer friends tend to share a similar world-view (are in the same 
graph component) but looser friends across a local bridge are in a different social network 
(and are in a different graph component).

Smaller size

Bob Charlie

Alice

WORKS_WITH

M
ANAGESM

ANAGES

Edward Frances

Davina

PEER_OF

M
ANAGESM

ANAGES

PEER_OF

FIGURE 7.7: Alice and Davina are connected by a local 
bridge but belong to different graph components.

In the image above, Davina and Alice are connected by a local bridge but belong to different 
graph components. If Davina were to look for a new job, she would be more likely to find a 
successful recommendation from Alice than from Frances.

This property of local bridges being weak links is something that is found throughout social 
graphs. As a result, we can make predictive analyses based on empirically derived local 
bridges and strong triadic closure notions.

The Final Takeaway
While graphs and our understanding of them are rooted in hundreds of years of study, 
we continue to find new ways to apply them to our personal, social and business lives. 
Technology today offers another method of understanding these principles in the form of the 
modern graph database.  
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Chapter 8 
Graph Search Algorithm Basics
While graph databases are certainly a rising tide in the world of technology, graph theory and 
graph algorithms are mature and well-understood fields of computer science. 

In particular, graph search algorithms can be used to mine useful patterns and results from 
persisted graph data. As this is a practical introduction to graph databases, this chapter will 
discuss the basics of graph theory without diving too deeply into the mathematics.

Depth- and Breadth-First Search
There are two basic types of graph search algorithms: depth-first and breadth-first. 

The former travel from a starting node to some end node before repeating the search down 
a different path from the same start node until the query is answered. Generally, depth-first 
is a good choice when trying to discover discrete pieces of information. They are also a good 
strategy for general graph traversals. 

The most classic or basic level of depth-first is an uninformed search, where the algorithm 
searches a path until it reaches the end of the graph, then backtracks to the start node and 
tries a different path. 

On the contrary, dealing with semantically rich graph databases allows for informed searches, 
which conduct an early termination of a search if nodes with no compatible outgoing 
relationships are found. As a result, informed searches also have lower execution times. 

(For the record, Cypher queries and Java traversals generally perform informed searches.) 

Breadth-first algorithms conduct searches by exploring the graph one layer at a time. They 
begin with nodes one level deep away from the start node, followed by nodes at depth two, 
then depth three, and so on until the entire graph has been traversed.
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FIGURE 8.1: An example path of a breadth-first algorithm, where the search begins 
at the node marked “0” and then traverses first to every node marked “1” before 
journeying on to nodes marked “2” and then finally visiting all nodes marked “3.”

There are two basic 
types of graph search 
algorithms: depth-first 
and breadth-first.
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Dijkstra’s Algorithm
The goal of Dijkstra’s algorithm is to conduct a breadth-first search with a higher level of analysis in order to find the shortest path 
between two nodes in a graph. It does so in the following manner:

Pick the start and end nodes and add the start node to the set of solved nodes with a value of 0. Solved nodes are the set of nodes 
with the shortest known path from the start node. The start node has a value of 0 because it is 0 path-lengths away from itself.

Traverse breadth-first from the start node to its nearest neighbors and record the path length against each neighboring node.

Pick the shortest path to one of these neighbors and mark that node as solved. In case of a tie, Dijkstra’s algorithm will pick at random.

Visit the nearest neighbors to the set of solved nodes and record the path lengths from the start node against these new neighbors. 
Don’t visit any neighboring nodes that have already been solved, as we already know the shortest paths to them.

Repeat steps three and four until the destination node has been marked solved. Dijkstra’s algorithm is very efficient as it works only 
with a smaller subset of the possible paths through a graph. After each node is solved, the shortest path from the start node is known 
and all subsequent paths build upon that knowledge. 

Dijkstra’s algorithm is often used to find real-world shortest paths, such as for navigation and logistics. Let’s see how it would find the 
shortest driving route between Sydney and Perth in Australia.
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FIGURE 8.3: As the start node, Sydney has a 
value of 0 as we are already there.

FIGURE 8.2: A graph of cities throughout Australia. 

Moving in a breadth-first manner, we look at the next cities one hop away from Sydney: Brisbane, Canberra and Melbourne.
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FIGURE 8.4: The algorithm has found 
the shortest path as being between 
Sydney and Canberra.
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Canberra is the shortest path at 4 hours, so we count that as solved. 
We continue onto the next level, considering the next nodes out 
from our solved nodes and selecting the shortest paths. From there, 
Brisbane at 9 hours is the next solved node (Figure 8.5).
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FIGURE 8.7

We move on, choosing between Melbourne, Cairns and Alice 
Springs. Melbourne is the shortest path at 10 hours from Sydney 
(via Canberra), so it becomes the next solved node (Figure 8.6).

Our next few options of neighboring nodes are Adelaide, Cairns 
and Alice Springs. At 18 hours from Sydney (via Canberra and 
Melbourne), Adelaide is the next shortest path.

https://neo4j.com
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The next options are Perth (our final destination), Alice Springs and Cairns. While in reality it would be most efficient to head  
directly to Perth, according to Dijkstra’s algorithm, Alice Springs is chosen because it has the current shortest path (19 total hours  
vs. 50 total hours). 

Note that because this is a breadth-first search, Dijkstra’s algorithm must first search all still-possible paths, not just the first solution 
that it happens across. This principle is why Perth isn’t immediately ruled out as the shortest path.
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FIGURE 8.9: From Alice Springs, our two options are 
Darwin and Cairns. The latter is 31 hours to the 
former’s 34 hours, so Cairns is the next solved node. 

FIGURE 8.8: Dijkstra’s algorithm continues to 
search all possible paths, even when it comes 
across one of many possible solutions.
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FIGURE 8.10: The path from Sydney to Darwin is 
a total of 34 hours.
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FIGURE 8.11: From Darwin, we examine the  
only remaining node on the graph: Perth. 
However, this given explored path to Perth  
via Darwin comes at a cost of 82 hours. 
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Now that Dijkstra’s algorithm has solved for all possible paths, it can rightly compare the two 
routes to Perth via Adelaide at a cost of 50 hours, or via Darwin at a cost of 82 hours.

Accordingly, Dijkstra’s algorithm would choose the route via Adelaide and consider Perth 
from Sydney solved at a shortest path of 50 hours. 

In the end, we can see that the algorithm uses an undirected exploration to find its results. 
Occasionally, this causes us to explore more of the graph than is intuitively necessary, as 
Dijkstra’s algorithm looks at each node in relative isolation and may end up following paths 
that do not contribute to the overall shortest path (like we saw above).

The example above could have been improved if the search had been guided by some 
heuristic like in a best-first search. To apply that in our own example, we could have chosen 
to prefer heading west over east and heading south over north, which would have helped 
avoid the unnecessary side trips taken.

The A* Algorithm
Consequently, the A* algorithm improves upon Dijkstra’s algorithm by combining some of its 
elements with elements of a best-first search. Pronounced "A-star", the A* algorithm is based 
on the observation that some searches are informed, which helps us make better choices 
over which paths to take through the graph. Like Dijkstra’s algorithm, A* can search a large 
area of a graph, but like a best-first search, A* uses a heuristic to guide its search. 

Additionally, while Dijkstra’s algorithm prefers to search nodes close to the current starting 
point, a best-first search prefers nodes closer to the destination. A* balances the two 
approaches to ensure that at each level, it chooses the node with the lowest overall cost 
of the traversal. As demonstrated by the example in the previous section, it is possible for 
Dijkstra’s algorithm to overlook a better route while trying to complete its search. 

For more information on how the A* algorithm is used in practice, consult Chapter 7 of 
Graph Databases from O’Reilly Media.

Conclusion
As has been illustrated above, graph search algorithms are helpful in traversing a set of graph 
data and providing relevant information. However, they also have their limitations. 

We have seen that there are many varieties of search algorithms, ranging from the more 
basic breadth-first and depth-first to uninformed and informed searches to Dijkstra’s and the 
A* algorithms. Each has its own strengths and weaknesses; no one type is necessarily better 
than another.

Graph search 
algorithms are helpful 
in traversing a set 
of graph data and 
providing relevant 
information.
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Chapter 9 
Why We Need NoSQL Databases
As the problems with SQL-based relational databases have become all too clear, there’s been 
a meteoric rise in the popularity of a new family of data storage technologies known as NoSQL.

NoSQL is a cheeky acronym for Not Only SQL – or more confrontationally – No to SQL. But 
the term “NoSQL” only defines what these data stores are not, rather than what they are. 

In this chapter, we’ll discuss the many and motley world of NoSQL databases and why they’ve 
become so popular.

The Diverse World of NoSQL Databases
NoSQL databases are a spectrum of data storage technologies that are more varied than 
they are similar so it’s difficult to make sweeping generalizations about their characteristics. 

In the following chapters, we’ll explore a few types of NoSQL databases. Our tour will 
encompass the group collectively known as aggregate stores (highlighted in blue below), 
including key-value stores, column family stores and document stores, as well as the various 
types of graph databases (in green), which include property graphs, hypergraphs and RDF 
triple stores.
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FIGURE 9.1: Aggregate data stores 
(blue) and graph databases (green).

Historically, most enterprise-level web applications ran on top of a relational database 
(RDBMS). But in the past decade alone, the data landscape has changed significantly and in a 
way that traditional RDBMS deployments simply can’t manage.

The NoSQL database movement has emerged particularly in response to three of these data 
challenges: data volume, data velocity, and data variety.

We’ll explore each of these challenges in further detail on the following page.

NoSQL is a cheeky 
acronym for Not 
Only SQL – or more 
confrontationally – 
No to SQL. But the 
term “NoSQL” only 
defines what these 
data stores are not, 
rather than what they 
are. In this chapter, 
we’ll discuss the many 
and motley world of 
NoSQL databases and 
why they’ve become so 
popular.
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Data Volume
It’s no surprise that as data storage has increased dramatically, 
data volume (i.e., the size of stored data) has become the principal 
driver behind the enterprise adoption of NoSQL databases.

Large datasets simply become too unwieldy when stored 
in relational databases. In particular, query execution times 
increase as the size of tables and the number of JOINs grow (so-
called JOIN pain).

This isn’t always the fault of the relational databases themselves 
though. Rather, it has to do with the underlying data model.

In order to avoid JOINs and JOIN pain, the NoSQL world has 
several alternatives to the relational model. While these NoSQL 
data models are better at handling today’s larger datasets, most 
of them are simply not as expressive as the relational model. 
The only exception is the graph model, which is actually more 
expressive. (More on that in later chapters.)

Data Velocity
Volume isn’t the only problem modern web-facing systems  
have to deal with. Besides being big, today’s data often changes 
very rapidly.

Thus, data velocity (i.e., the rate at which data changes over time) 
is the next major challenge that NoSQL databases are designed 
to overcome.

Velocity is rarely a static metric. A lot of velocity measurements 
depend on the context of both internal and external changes  
to an application, some of which have considerable system- 
wide impact.

Coupled with high volume, variations in data velocity require 
a database to not only handle high levels of edits (tech lingo: 
write loads), but also deal with surging peaks of database 
activity. Relational databases simply aren’t prepared to handle a 
sustained level of write loads and can crash during peak activity 
if not properly tuned.

But there’s also another aspect of data velocity NoSQL 
technology helps us overcome: the rate at which the data 
structure changes. In other words, it’s not just about the rapid 
change of specific data points but also the rapid change of the 
data model.

Data structures commonly shift for two major reasons. First is 
the fast-moving nature of business. As your enterprise changes, 
so do your data needs.

Second is that data acquisition is often experimental. Sometimes 
your application captures certain data points just in case you 
might need them later on. The data that proves valuable to your 
business usually sticks around, but if it isn’t worthwhile, then 
those data points often fall by the wayside. Consequently, these 
experimental additions and eliminations affect your data model 
on a regular basis.

Both forms of data velocity are problematic for relational 
databases to handle. Frequent, high write loads come with 
expensive processing costs, and regular data structure changes 
come with high operational costs. 

NoSQL databases address both data velocity challenges by 
optimizing for high write loads and by having flexible data models.

Data Variety
The final challenge in today’s data landscape is data variety – 
that is, it can be dense or sparse, connected or disconnected, 
regularly or irregularly structured.

Today’s data is far more varied than what relational databases 
were originally designed for. In fact, that’s why many of today’s 
RDBMS deployments have a number of nulls in their tables and 
null checks in their code – it’s all to adjust to today’s data variety.

On the other hand, NoSQL databases are designed from the 
bottom up to adjust for a wide diversity of data and flexibly 
address future data needs.

Conclusion
Relational databases can no longer handle today’s data volume, 
velocity and variety. Yet, understanding how NoSQL databases 
overcome these challenges is only the prelude to finding the 
right database for your enterprise.

In the next few chapters, we’ll explore the strengths and 
weaknesses of various NoSQL technologies so you can make the 
most informed decision possible.
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Chapter 10 
ACID vs. BASE Explained
When it comes to NoSQL databases, data consistency models can sometimes be strikingly 
different from those used by relational databases (as well as quite different from other 
NoSQL stores).

The two most common consistency models are known by the acronyms ACID and BASE. 
While they’re often pitted against each other in a battle for ultimate victory, the fact remains 
that both consistency models come with advantages – and disadvantages – and neither is 
always a perfect fit.

The following chapter discusses the key differences between ACID and BASE data consistency 
models and what their various trade-offs and advantages mean for your database transactions.

The ACID Consistency Model
Many developers are familiar with ACID transactions from working with relational databases. 
As such, the ACID consistency model has been the norm for some time.

The key ACID guarantee is that it provides a safe environment in which to operate on your 
data. The ACID acronym stands for:

Atomic
All operations in a transaction succeed or every operation is rolled back.

Consistent
On the completion of a transaction, the database is structurally sound.

Isolated
Transactions do not contend with one another. Contentious access to data is moderated by 
the database so that transactions appear to run sequentially.

Durable
The results of applying a transaction are permanent, even in the presence of failures.

ACID properties mean that once a transaction is complete, its data is consistent (tech lingo: 
write consistency) and stable on disk, which may involve multiple distinct memory locations.

Write consistency can be a wonderful thing for application developers, but it also requires 
sophisticated locking that is typically a heavyweight pattern for most use cases.

When it comes to NoSQL technologies, most graph databases (including Neo4j) use an ACID 
consistency model to ensure data is safe and consistently stored.

The BASE Consistency Model
For many domains and use cases, ACID transactions are far more pessimistic (i.e., they’re 
more worried about data safety) than the domain actually requires.

In the NoSQL world, ACID transactions are less fashionable, as some databases have 
loosened the requirements for immediate consistency, data freshness and accuracy in order 
to gain other benefits, like scale and resilience.

(Notably, the .NET-based RavenDB has bucked the trend among aggregate stores in 
supporting ACID transactions.)

The two most common 
consistency models 
are known by the 
acronyms ACID and 
BASE. While they’re 
often pitted against 
each other in a battle 
for ultimate victory, the 
fact remains that both 
consistency models 
come with advantages 
– and disadvantages – 
and neither is always a 
perfect fit.
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Here’s how the BASE acronym breaks down:

Basic Availability
The database appears to work most of the time.

Soft State
Stores don’t have to be write-consistent, nor do different replicas have to be mutually 
consistent all the time.

Eventual Consistency
Stores exhibit consistency at some later point (e.g., lazily at read time).

BASE properties are much looser than ACID guarantees, but there isn’t a direct one-for-one 
mapping between the two consistency models. 

A BASE datastore values availability (since that’s important for scale), but it doesn’t offer 
guaranteed consistency of replicated data at write time. Overall, the BASE consistency model 
provides a less strict assurance than ACID: data will be consistent in the future, either at read 
time (e.g., Riak) or it will always be consistent, but only for certain processed past snapshots 
(e.g., Datomic).

The BASE consistency model is primarily used by aggregate stores, including column family, 
key-value and document stores.

Navigating ACID vs. BASE Trade-offs
There’s no right answer to whether your application needs an ACID versus BASE consistency 
model. Developers and data architects should select their data consistency trade-offs on a 
case-by-case basis – not based just on what’s trending or what model was used previously.

Given BASE’s loose consistency, developers need to be more knowledgeable and rigorous 
about consistent data if they choose a BASE store for their application. It’s essential to 
be familiar with the BASE behavior of your chosen aggregate store and work within those 
constraints.

On the other hand, planning around BASE limitations can sometimes be a major 
disadvantage when compared to the simplicity of ACID transactions. A fully ACID database is 
the perfect fit for use cases where data reliability and consistency are essential.

In the next two chapters we’ll dive into more ACID/BASE specifics when it comes to aggregate 
stores and other graph technologies.

Given BASE’s 
loose consistency, 
developers need to be 
more knowledgeable 
and rigorous about 
consistent data if they 
choose a BASE store 
for their application. 
It’s essential to be 
familiar with the BASE 
behavior of your 
chosen aggregate 
store and work within 
those constraints.
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Chapter 11 
A Tour of Aggregate Stores

Aggregate Stores and the World of NoSQL Databases
The group of NoSQL databases collectively known as aggregate stores (term coined by 
Martin Fowler) includes key-value stores, column family stores and document stores, which 
are all highlighted in blue below. (In Chapter 12, we’ll examine the various types of graph 
technologies, which are another facet of NoSQL.)

It’s worth noting that aggregate stores eschew connections between aggregates – only graph 
databases fully capitalize on data relationships.
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FIGURE 11.1: Aggregate data stores (blue) and graph databases (green).

In the following sections, we’ll explore each of these three blue quadrants, highlighting the 
characteristics of each data model, operational aspects and the main drivers for adoption.

Key Value Stores
Key-value stores are large, distributed hashmap data structures that store and retrieve values 
organized by identifiers known as keys.

Here’s a diagram of an example key-value store.
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. .
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00
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. .

13
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15

keys hash function buckets

FIGURE 11.2: A basic key-value 
store. Source: Jorge Stolfi.

The group of NoSQL 
databases collectively 
known as aggregate 
stores includes key-
value stores, column 
family stores and 
document stores.
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As you can see, a bucket contains a specific number of values, and for fault-tolerance 
reasons, each bucket is replicated onto several machines. However, machines should never 
be exact copies of one another – not only for data replication purposes but also for better 
load balancing.

An application wishing to store or retrieve data in a key-value store only needs to know (or 
compute) the corresponding key, which can be as natural as a username, an email address, 
Cartesian coordinates, a Social Security number or a ZIP code. With a sensibly designed 
system, the chance of losing data due to a missing key is low.

In theory, key-value stores simply concern themselves with efficient storage and retrieval 
of data, unencumbered by its nature or usage. But this approach has its downsides: When 
extracting data from a stored value, applications often have to retrieve the entire value (which 
can be quite large) and then filter out any unwanted elements, which can be inefficient.

Although simple, the key-value model doesn’t offer much insight into data relationships. In 
order to retrieve sets of information across several records, you typically need to conduct 
external processing with an algorithm like MapReduce, often producing highly latent results.

However, key-value stores do have certain advantages. Since they’re descended from 
Amazon’s DynamoDB, they are optimized for high availability and scale. Or, as the Amazon 
team puts it, they should work even “if disks are failing, network routes are flapping or data 
centers are being destroyed by tornadoes.”

Column Family Stores
Column family stores (also known as wide-column stores) are based on a sparsely populated 
table whose rows can contain arbitrary columns and where keys provide for natural indexing. 

(Note: In the explanation below, we’ll use terminology from Apache Cassandra since it is one 
of the most popular column family stores.)

In the diagram below, you can see the four building blocks of a column family database.
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Column

value

super column name
name

...
name Super 

Columnvalue value

row key
Super 
Column 
Family

super column name super column name
name

...
name

...
name

...
name

value value value value

row key
name

...
name Column 

Familyvalue value

FIGURE 11.3: The four building blocks of a column family database.

In theory, key-value 
stores simply concern 
themselves with 
efficient storage and 
retrieval of data, 
unencumbered by 
its nature or usage. 
But this approach 
has its downsides: 
When extracting 
data from a stored 
value, applications 
often have to retrieve 
the entire value 
(which can be quite 
large) and then filter 
out any unwanted 
elements, which can 
be inefficient.
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The simplest unit of storage is the column itself consisting of a name-value pair. Any number 
of columns can then be combined into a super column, which gives a name to a particular 
set of columns. Columns are stored in rows, and when a row contains columns only, it is 
known as a column family, but when a row contains super columns, it is known as a super 
column family.

At first it might seem odd to include rows when the data is mostly organized via columns, but 
in fact, rows are vital since they provide a nested hashmap for columnar data. Consider the 
diagram below of a super column family mapping out a recording artist and his albums.

Super Column Family

Billy Bragg
personal details Life’s a Riot with 

Spy vs Spy
Worker’s 
Playtime

born nationality year award year
19571220 English 1983 gold 1988

Row Key Super Column Column

FIGURE 11.4: A super column family mapping out a recording artist and his albums.

In a column family database, each row in the table represents a particular overarching entity 
(e.g., everything about an artist). These column families are containers for related pieces of 
data, such as the artist’s name and discography. Within the column families, we find actual 
key-value data, such as album release dates and the artist’s date of birth.

Here’s the kicker: This row-oriented view can also be turned 90 degrees to arrive at a column-
oriented view. Where each row gives a complete view of one entity, the column view naturally 
indexes particular aspects across the whole dataset. 

For example, let’s look at the figure below:

Joe Strummer personal details
nationality

...
English

Billy Bragg personal details
nationality

...
English

Woody Guthrie ...

Phil Ochs personal details
nationality

...
American

Plan B personal details
nationality

...
English

FIGURE 11.5: Keys form a 
natural index through rows  
in a column family database.

In a column family 
database, each row in 
the table represents a 
particular overarching 
entity (e.g., everything 
about an artist). These 
column families are 
containers for related 
pieces of data, such as 
the artist’s name and 
discography.
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It’s no surprise that as data storage has increased dramatically, data volume (i.e., the size of stored data) has become the principal 
driver behind the enterprise adoption of NoSQL databases.

As you can see, by “lining up” keys we can find all the rows where the artist is English. From there it’s easy to extract complete artist 
data from each row. It’s not the same as the connected data we’d find in a graph, but it does provide some insight into related entities.

Column family databases are distinguished from document and key-value stores not only by their more expressive data model, but 
also by their architecture built for distribution, scale and failover. And yet they’re still aggregate stores and, as such, lack JOINs or first-
class data relationships.

Document Stores
Put simply, document databases store and 
retrieve documents just like an electronic 
filing cabinet. Documents can include maps 
and lists, allowing for natural hierarchies. In 
fact, document stores are most familiar to 
developers who are used to working with 
hierarchically structured documents.

At the most basic level, documents are 
stored and retrieved by ID. If an application 
remembers the IDs it’s most interested in (such 
as usernames), then a document store acts 
much like a key-value store.

The document model usually involves having 
a hierarchical JSON document as the primary 
data structure, and any field inside of the 
hierarchy can then be indexed. For example, 
in the diagram to the right, the embedded 
sub-documents are part of the larger user 
document.

Because document stores have a data model 
around disconnected entities, their major advantage is horizontal scaling. However, most document databases require developers to 
explicitly plan for sharding of data across instances to support this horizontal scale while key-value stores and column family stores 
don’t require this extra step.

To see an example of how MongoDB – one of the most popular document stores – integrates with Neo4j, check out the Wanderu  
case study.

Query Versus Processing in NoSQL Aggregate Stores
On balance, the similarities between NoSQL aggregate stores are greater than the differences. While each has a different storage 
strategy, they all share similar characteristics when it comes to querying data.

For simple queries, aggregate stores use indexing, basic document linking or a query language. 

However, for more complex queries, aggregate stores cannot generate deeper insights simply by examining individual data points. 
To compensate, an application typically has to identify and extract a subset of data and run it through an external processing 
infrastructure such as the MapReduce framework (often in the form of Apache Hadoop).

MapReduce is a parallel programming model that splits data and operates on it in parallel before gathering it back together and 
aggregating it to provide focused information. 

FIGURE 11.6: Embedded data in a document store. 
Source: MongoDB Data Model Design documentation

{
  _id: <ObjectId1>,
  username: "123xyz",
  contact: {
  phone: "123-456-7890",
  email: "xyz@example.com"
           },
  access: {
  level: 5,
  group: "dev"
          }
}

Embedded 
sub-document

Embedded 
sub-document
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For example, if we wanted to use MapReduce to count the number of Americans there are in 
a recording artists database, we’d need to extract all artist data and discard the non-American 
ones in the map phase. Then, we’d count the remaining records in the reduce phase.

But even with a lot of machines and a fast network infrastructure, MapReduce can be quite 
latent. So latent, in fact, that often a development team needs to introduce new indexes or 
ad hoc queries in order to focus (and trim) the dataset for better MapReduce speeds.

Conclusion
Aggregate stores are good at storing big sets of discrete data, but they do that by sacrificing a 
data model, language and functionality for handling data relationships.

Graph DatabasesOther NoSQL

Discrete Data
Minimally

Connected Data

Connected Data
Focused on

Data Relationships

Relational Databases

FIGURE 11.7: The spectrum of databases for discrete versus connected data.

If you try to use aggregate stores for interrelated data, it results in a disjointed development 
experience since you have to add a lot of code to fill in where the underlying aggregate store 
leaves off. And as the number of hops (or “degrees” of the query) increases, aggregate stores 
slow down significantly.

Graph databases, on the other hand, embrace relationships in order to solve problems that 
involve context and connectedness. Consequently, they have very different design principles 
and a different architectural foundation.

Do aggregate stores have their perfect use cases? Certainly. But they aren’t for dealing with 
problems that require an understanding of how things are connected.

Graph databases, 
on the other 
hand, embrace 
relationships in order 
to solve problems 
that involve context 
and connectedness. 
Consequently, they 
have very different 
design principles and a 
different architectural 
foundation.
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Chapter 12 
Other Graph Database Technologies
Whether you’re new to the world of graph databases or an old pro, it’s easy to assume 
there’s only a few types of graph database technologies.

In reality, it’s one of the most diverse sectors of the NoSQL ecosystem. In this chapter, 
we’ll discuss the spectrum of graph database technologies and where they belong in the 
world of NoSQL.

Review: The NoSQL Matrix
The macrocosm of NoSQL databases is a diverse one of which graph databases are 
only a part. In Chapter 11, we toured the three blue quadrants of the matrix, which are 
collectively known as aggregate stores, including key-value, column family and document 
stores.

Now we’ll be double-clicking on the equally diverse world of graph database 
technologies, which occupy the green quadrant in the matrix to the right.

The Spectrum of Graph Database Technologies
We already walked through a formal definition of a graph database in Chapter 1, but let’s do a quick review.

A graph database is an online, operational database management system capable of Create, Read, Update, and Delete (tech lingo: 
CRUD) processes that operate on a graph data model.

There are two important properties of graph database technologies:

Graph Storage
Some graph databases use “native” graph storage that is specifically designed to store and manage graphs, while others use relational 
or object-oriented databases, which are often slower.

Graph Processing Engine
Native graph processing (tech lingo: index-free adjacency) is the most efficient means of processing data in a graph because 
connected nodes physically “point” to each other in the database. Non-native graph processing engines use other means to process 
CRUD operations. For more information on native vs. non-native graph technology, see Chapter 13.

Besides specifics around storage and processing, graph databases also adopt distinct data models. The most common graph data 
models include property graphs, hypergraphs and triples. Let’s dive into each of these below.

Property Graphs
Property graphs are the type of graph database we’ve already talked about most. In fact, our original definition of a graph database 
was more precisely about a property graph.

Here’s a quick recap of what makes a graph database a property graph (it’s worth noting that Neo4j is a property graph database):

• Property graphs contain nodes (data entities) and relationships (data connections).

• Nodes can contain properties (tech lingo: key-value pairs).

• Nodes can be labeled with one or more labels.

• Relationships have both names and directions.

• Relationships always have a start node and an end node.

Key-Value Graph DB

Column Family Document

1 1
1

1
11
1
1

1
1

1

1 1

FIGURE 12.1: Aggregate data stores 
(blue) and graph databases (green).
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• Like nodes, relationships can also contain properties.

Hypergraphs
A hypergraph is a graph model in which a relationship (called a hyperedge) can connect any number of given nodes. While a property 
graph permits a relationship to have only one start node and one end node, the hypergraph model allows any number of nodes at 
either end of a relationship.

Hypergraphs can be useful when your data includes a large number of many-to-many relationships. Let’s look at Figure 12.2.

In this simple (directed) hypergraph, we see that Alice and Bob are the owners of three vehicles, but we can express this relationship  
using a single hyperedge. In a property graph, we would have to use six relationships to express the concept.

In theory, hypergraphs should produce accurate, information-rich data models. However, in practice, it’s very easy for us to miss some 
detail while modeling. For example, let’s look at the figure below, which is the property graph equivalent of the hypergraph shown in 
Figure 12.3.

This property graph model requires several OWNS relationships to express what the hypergraph captured with just one hyperedge. 
Yet, by using six relationships instead of one, we have two distinct advantages:

    1. We’re using a more familiar and explicit data modeling technique (resulting in less confusion for a development team)

    2. We can also fine-tune the model with properties such as “primary driver” (for insurance purposes), which is something we can’t 
do with a single hyperedge.

Because hyperedges are multidimensional, hypergraph models are more generalized than property graphs. Yet, the two are 
isomorphic, so you can always represent a hypergraph as a property graph (albeit with more relationships and nodes).

While property graphs are widely considered to have the best balance of pragmatism and modeling efficiency, hypergraphs show their 
particular strength in capturing meta-intent. For example, if you need to qualify one relationship with another (e.g., I like the fact that 
you liked that car), then hypergraphs typically require fewer primitives than property graphs.

Whether a hypergraph or a property graph is best for you depends on your modeling mindset and the types of applications 
you’re building.

car: Mini car: Range 
Rover

driver: Alice driver: Bob

car: Prius

OWNS

FIGURE 12.2: A directed hypergraph of the cars 
owned by Alice and Bob.
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FIGURE 12.3: A property graph model of the cars 
owned by Alice and Bob.

https://neo4j.com


neo4j.com40

Graph Databases For Beginners

neo4j.com40

Triple Stores
Triple stores come from the Semantic Web movement and store data in a format known as a 
triple. Triples consist of a subject-predicate-object data structure.

Using triples, we can capture facts such as “Ginger dances with Fred” and “Fred likes ice 
cream.” Individually, single triples aren’t very useful semantically, but en masse, they provide a 
rich dataset from which to harvest knowledge and infer connections. 

Triple stores are modeled around the Resource Description Framework (RDF) specifications 
laid out by the W3C, using SPARQL as their query language.

Data processed by triple stores tends to be logically linked, thus triple stores are included 
in the category of graph databases. However, triple stores are not “native” graph databases 
because they don’t support index-free adjacency, nor are their storage engines optimized for 
storing property graphs.

Triple stores store triples as independent elements, which allows them to scale horizontally 
but prevents them from rapidly traversing relationships. In order to perform graph queries, 
triple stores must create connections from individual, independent facts – adding latency to 
every query.

Because of these trade-offs in scale and latency, the most common use case for triple stores 
is offline analytics rather than for online transactions.

Conclusion
Just like for other NoSQL databases, every type of graph database is best suited for a 
different function. Hypergraphs are a good fit for capturing meta-intent and RDF triple stores 
are proficient at offline analytics. But for online transactional processing, nothing beats a 
property graph for a rapid traversal of data connections.

Just like for other 
NoSQL databases, 
every type of graph 
database is best suited 
for a different function. 
Hypergraphs are a 
good fit for capturing 
meta-intent and 
RDF triple stores are 
proficient at offline 
analytics. But for 
online transactional 
processing, nothing 
beats a property graph 
for a rapid traversal of 
data connections.
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Chapter 13 
Native vs. Non-Native Graph Processing
No technology is equally good at everything, and databases are no exception. It’s possible for 
databases to satisfy different kinds of functions: batch and transactional workloads, memory 
access and disk access, SQL and XML access, and graph and document data models. 

When building a database management system (DBMS), development teams must decide 
early on what cases to optimize for, which will dictate how well the DBMS will handle the tasks 
it is dealt (what the DBMS will be amazing at, what it will be okay at, and what it may not do so 
well). As a result, the graph database world is populated with both technology designed to be 
“graph first,” known as native, and technology where graphs are an afterthought, classified as 
non-native.

There’s a considerable difference when it comes to the native architecture of both graph 
storage and processing. Unsurprisingly, native technologies tend to perform queries faster, 
scale bigger (retaining their hallmark query speed as the dataset grows in size) and run more 
efficiently, calling for much less hardware. As a result, it’s critical to understand the differences.

Now that we have a relatively comprehensive grasp of the basics from earlier chapters in 
this ebook, it is time to go over the differing internal properties of a graph database. In this 
chapter, we will discuss some of the characteristics that distinguish native graph databases 
and why these characteristics are of interest to graph database users. 

What “Graph First” Means for Native Graph Technology
There are two main elements that distinguish native graph technology: storage and processing. 

Graph storage commonly refers to the underlying structure of the database that contains 
graph data. When built specifically for storing graph-like data, it is known as native graph 
storage. Graph databases with native graph storage are optimized for graphs in every aspect, 
ensuring that data is stored efficiently by writing nodes and relationships close to each other. 

Graph storage is classified as non-native when the storage comes from an outside source, 
such as a relational, columnar or other NoSQL database. These databases use other 
algorithms to store data about nodes and relationships, which may end up being placed 
far apart. This non-native approach can lead to latent results as their storage layer is not 
optimized for graphs.

Native graph processing is another key element of graph technology, referring to how a 
graph database processes database operations, including both storage and queries. Index-
free adjacency is the key differentiator of native graph processing. 

At write time, index-free adjacency speeds up storage processing by ensuring that each node 
is stored directly to its adjacent nodes and relationships. Then, during query processing (i.e., 
read time), index-free adjacency ensures lightning-fast retrieval without the need for indexes. 
Graph databases that rely on global indexes (rather than index-free adjacency) to gather 
results are classified as having non-native processing.

Another important consideration is ACID writes. Related data brings an uncommonly strict 
need for data integrity beyond that of other NoSQL models. In order to store a connection 
between two things, we must not only write a relationship record but update the node at 
each end of the relationship as well. If any one of these three write operations fails, it will 
result in a corrupted graph.

There are two 
main elements that 
distinguish native 
graph technology: 
storage and 
processing. Graph 
storage commonly 
refers to the 
underlying structure 
of the database 
that contains graph 
data. Native graph 
processing is another 
key element of graph 
technology, referring 
to how a graph 
database processes 
database operations, 
including both storage 
and queries.
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The only way to ensure that graphs aren’t corrupted over time is to carry out writes as 
fully ACID transactions. Systems with native graph processing include the proper internal 
guard rails to ensure that data quality remains impervious to network blips, server failures, 
competing transactions and the like. 

Native Graph Storage
To dive into further detail, the element that makes a graph storage native is the structure of 
the graph database from the ground up. Graph databases with native graph storage have 
underlying storage designed specifically for the storage and management of graphs. They are 
designed to maximize the speed of traversals during arbitrary graph algorithms. 

For example, let’s take a look at the way Neo4j – a native graph database – is structured for 
native graph storage. Every layer of this architecture – from the Cypher query language to 
the files on disk – is optimized for storing graph data, and not a single part is substituted with  
other non-graph technologies.

Traversal API Core API Cypher

Lock Manager

Page Cache

Record Files

Disks

Transaction Management

Transaction Log

FIGURE 13.1: The Neo4j Structure for native graph storage.

Graph data is kept in store files, each of which contain data for a specific part of the graph, 
such as nodes, relationships, labels and properties. Dividing the storage in this way facilitates 
highly performant graph traversals.

In a native graph database, a node record’s main purpose is to simply point to lists of 
relationships, labels and properties, making it quite lightweight. 

So, what makes non-native graph storage different from a native graph database? 

Non-native graph storage uses a relational database, a columnar database or some other 
general-purpose data store rather than being specifically engineered for the uniqueness 
of graph data. While the typical operations team might be more familiar with a non-graph 
backend (like MySQL or Cassandra), the disconnect between graph data and non-graph 
storage results in a number of performance and scalability concerns. 

Non-native graph databases are not optimized for storing graphs, so the algorithms 
utilized for writing data may store nodes and relationships all over the place. This causes 
performance problems at the time of retrieval because all these nodes and relationships 
then have to be reassembled for every single query.

On the other hand, native graph storage is built to handle highly interconnected datasets 
from the ground up and is therefore the most efficient when it comes to the storage and 
retrieval of graph data.
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Native Graph Processing
A graph database has native processing capabilities if it uses index-free adjacency. This 
means that each node directly references its adjacent nodes, acting as a micro-index for all 
nearby nodes. Index-free adjacency is more efficient and cheaper than using global indexes, 
as query times are proportional to the amount of the graph searched, rather than increasing 
with the overall size of the data.

Since graph databases store relationship data as first-class entities, relationships are easier 
to traverse in any direction with native graph processing. With processing that is specifically 
built for graph datasets, relationships – rather than over-reliance on indexes – are used to 
maximize the efficiency of traversals.

FRIEND
FRIEND

FRIEND
FRIEND

FRIEND
FRIEND

name: Alice

Person

name: Bob

PersonPerson

FRIEND

FRIEND

Person

FRIEND

FRIEND

FRIEND

name: Charlie name: Davina

FIGURE 13.2: Because graph databases store relationship data as first-class entities, 
relationships are easier to traverse in any direction with native graph processing.

On the other hand, non-native graph databases use global indexes to link nodes together. 
This method is more costly, as the indexes add another layer to each traversal, which slows 
processing considerably.

First of all, using a global index lookup is already far more expensive. Queries with more 
than one layer of connection further reduce traversal performance with non-native graph 
processing.

name: Davinaname: alice name: Bob name: Charlie

Alice
Alice
Alice
Bob
Bob
Bob
Charlie
Charlie
Charlie
Davina
Davina
Davina

Davina
Charlie
Bob
Alice
Charlie
Davina
Bob
Davina
Alice
Charlie
Bob
Alice

FIGURE 13.3: An example global index look-up.
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In addition, reversing the direction of a traversal is extremely difficult with non-native graph 
processing. To reverse a traversal’s direction, you must either create a costly reverse-lookup 
index for each traversal, or perform a brute-force search through the original index.

The Bottom Line: Why Native vs. Non-Native Matters
When deciding between a native and non-native graph databases, it is important to 
understand the tradeoffs of working with each. 

Non-native graph technology most likely has a persistence layer that your development team 
is already familiar with (such as Cassandra, MySQL or another relational database), and when 
your dataset is small or less connected, choosing non-native graph technology isn’t likely to 
significantly affect the performance of your application. 

However, it’s important to note that datasets tend to grow over time, and today’s datasets are 
more unstructured, interconnected and interrelated than ever before. Even if your dataset is 
small to begin with, it’s essential to plan for the future if your data is likely to grow alongside 
your business. In this case, a native graph database will serve you better over the long term 
since the performance of non-native graph processing cripples under larger datasets. 

One of the biggest drivers behind moving to a native graph architecture is that it scales. As 
you add more data to the database, many queries that would slow with size in a non-native 
graph database remain lithe and speedy in a native context. 

Native graph scaling takes advantage of a large number of optimizations in storage and 
processing to yield a highly efficient approach, whereas non-native uses brute force to solve 
the problem, requiring more hardware (usually two to four times the amount of hardware or 
more) and resulting in lower latencies, especially for larger graphs. 

Not all applications require low latency or processing efficiency, and in those use cases, a 
non-native graph database might just do the job. But if your application requires storing, 
querying and traversing large interconnected datasets in real time for an always-on, mission-
critical application, then you need a database architecture specifically designed for handling 
graph data at scale. 

The bottom line: The importance of native vs. non-native graph technology depends on the 
particular needs of your application, but for enterprises hoping to leverage the connections 
in their data like never before, the performance, efficiency and scaling advantages of a native 
graph database are crucial for success.
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Questions about Neo4j? 

Conclusion 
Making the Switch to Graph Technology
Now that you’ve made it through this high-level introduction to graph databases, you’ve 
learned what makes graphs stand apart from the typical NoSQL aggregate stores and RDBMS 
technology. And while such databases serve important functions in the wide world of data, 
there are times when only graph technoloy holds the answers to the questions you, your 
company and your customers need answered.

Why? Because of its central focus on connections combined with the ability to handle 
increasingly-growing volumes and varieties of data at mind-boggling speeds. Together, this 
means that no matter how much your business or data model changes, your database will 
continue working for you.

Whether you need a solution that provides real-time recommendations, graph-based 
search or supply-chain management, be sure to review all the different ways in which graph 
technology can work for your company.

And while our customers span several continents and professional fields, they all agree 
that using the Neo4j graph database is a critical component of their business success and 
competitiveness. 

Are you a developer eager to learn more about making the switch? With so many ways 
to quickly get started, mastering graph database development is one of the best time 
investments you can make.

Other Resources
Videos:

• Intro to Neo4j and Graph Databases

• Intro to Graph Databases Episode #1 - Evolution of DBs

Books:
• O’Reilly book: Graph Databases

• Learning Neo4j

Trainings:
• Online Training: Getting Started with Neo4j

• Classroom Trainings
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