Neo4j Graph Data Science Client API Reference Graph Data Science Client API Reference
Graph Data Science Client docs

Contents

  • GraphDataScience
  • Graph procedures
  • Graph object
  • GraphCreateResult
  • Algorithms procedures
  • Machine learning procedures
  • Link Prediction Training Pipeline
  • Node Classification Training Pipeline
  • Node Regression Training Pipeline
  • NodePropertyStep
  • LinkFeature
  • Model procedures
  • Link Prediction Model
  • Node Classification Model
  • Node Regression Model
  • GraphSage Model
  • SimpleRelEmbeddingModel
  • Miscellaneous procedures
  • ServerVersion
  • GDS Sessions
  • DbmsConnectionInfo
  • SessionMemory
  • AlgorithmCategory
  • CloudLocation

Quick search

Link Prediction Training Pipeline¶

class graphdatascience.pipeline.lp_training_pipeline.LPTrainingPipeline¶

Represents a link prediction training pipeline. Construct an instance of this class using graphdatascience.GraphDataScience.lp_pipe().

addFeature(feature_type: str, **config: Any) → Series[Any]¶

Add a link feature to the pipeline.

Parameters:
  • feature_type – The type of feature to add.

  • **config – The configuration for the feature, this includes the node properties to use.

Returns:

The result of the query.

addLogisticRegression(**config: Any) → Series[Any]¶

Add a logistic regression model candidate to the pipeline.

Parameters:

**config – The configuration for the logistic regression model.

Returns:

The result of the query.

addMLP(**config: Any) → Series[Any]¶

Add a multi-layer perceptron model candidate to the pipeline.

Parameters:

**config – The configuration for the multi-layer perceptron model.

Returns:

The result of the query.

addNodeProperty(procedure_name: str, **config: Any) → Series[Any]¶

Add a node property step to the pipeline.

Parameters:
  • procedure_name – The name of the procedure to use.

  • **config – The configuration for the node property.

Returns:

The result of the query.

addRandomForest(**config: Any) → Series[Any]¶

Add a random forest model candidate to the pipeline.

Parameters:

**config – The configuration for the random forest model.

Returns:

The result of the query.

auto_tuning_config() → Series[Any]¶

Get the auto-tuning configuration of the pipeline.

Returns:

A Series containing the auto-tuning configuration.

configureAutoTuning(**config: Any) → Series[Any]¶

Configure auto-tuning for the pipeline.

Parameters:

**config – The configuration for auto-tuning.

Returns:

The result of the query.

configureSplit(**config: Any) → Series[Any]¶

Configure the splits for training the pipeline.

Parameters:

**config – The configuration for the splits.

Returns:

The result of the query.

creation_time() → Any¶

Get the creation time of the pipeline.

Returns:

The creation time of the pipeline.

drop(failIfMissing: bool = False) → Series[Any]¶

Drop the pipeline.

Parameters:

failIfMissing – If True, an error will be thrown if the pipeline does not exist.

Returns:

The result of the query.

exists() → bool¶

Check if the pipeline exists.

Returns:

True if the pipeline exists, False otherwise.

feature_steps() → DataFrame¶

Get the feature steps of the pipeline.

Returns:

A DataFrame containing the feature steps of the pipeline.

name() → str¶

Get the name of the pipeline.

Returns:

The name of the pipeline.

node_property_steps() → DataFrame¶

Get the node property steps of the pipeline.

Returns:

A DataFrame containing the node property steps.

parameter_space() → Series[Any]¶

Get the parameter space of the pipeline.

Returns:

A Series containing the parameter space.

split_config() → Series[float]¶

Get the split configuration of the pipeline.

Returns:

A Series containing the split configuration.

train(G: Graph, **config: Any) → tuple[MODEL_TYPE, Series[Any]]¶

Train a model on a given graph using the pipeline.

Parameters:
  • G – The graph to train on.

  • **config – The configuration for training.

Returns:

A tuple containing the trained model and the result of the query.

train_estimate(G: Graph, **config: Any) → Series[Any]¶

Estimate the training time for a given graph and configuration.

Parameters:
  • G – The graph to train on.

  • **config – The configuration for training.

Returns:

The result of the query.

type() → str¶

Get the type of the pipeline.

Returns:

The type of the pipeline. It will be one of NodeClassificationPipeline, LinkPredictionPipeline, or NodeRegressionPipeline.

© Neo4j, Inc.
Terms | Privacy | Sitemap

Neo4j®, Neo Technology®, Cypher®, Neo4j® Bloom™ and Neo4j® Aura™ are registered trademarks of Neo4j, Inc. All other marks are owned by their respective companies.

Contact Us →

US: 1-855-636-4532
Sweden +46 171 480 113
UK: +44 20 3868 3223
France: +33 (0) 1 88 46 13 20

Learn

  • Sandbox
  • Neo4j Community Site
  • Neo4j Developer Blog
  • Neo4j Videos
  • GraphAcademy
  • Neo4j Labs

Social

  • Twitter
  • Meetups
  • Github
  • Stack Overflow
  • Want to Speak?