Link Prediction Training Pipeline¶
- class graphdatascience.pipeline.lp_training_pipeline.LPTrainingPipeline¶
Represents a link prediction training pipeline. Construct an instance of this class using
graphdatascience.GraphDataScience.lp_pipe()
.- addFeature(feature_type: str, **config: Any) Series[Any] ¶
Add a link feature to the pipeline.
- Parameters:
feature_type – The type of feature to add.
**config – The configuration for the feature, this includes the node properties to use.
- Returns:
The result of the query.
- addLogisticRegression(**config: Any) Series[Any] ¶
Add a logistic regression model candidate to the pipeline.
- Parameters:
**config – The configuration for the logistic regression model.
- Returns:
The result of the query.
- addMLP(**config: Any) Series[Any] ¶
Add a multi-layer perceptron model candidate to the pipeline.
- Parameters:
**config – The configuration for the multi-layer perceptron model.
- Returns:
The result of the query.
- addNodeProperty(procedure_name: str, **config: Any) Series[Any] ¶
Add a node property step to the pipeline.
- Parameters:
procedure_name – The name of the procedure to use.
**config – The configuration for the node property.
- Returns:
The result of the query.
- addRandomForest(**config: Any) Series[Any] ¶
Add a random forest model candidate to the pipeline.
- Parameters:
**config – The configuration for the random forest model.
- Returns:
The result of the query.
- auto_tuning_config() Series[Any] ¶
Get the auto-tuning configuration of the pipeline.
- Returns:
A Series containing the auto-tuning configuration.
- configureAutoTuning(**config: Any) Series[Any] ¶
Configure auto-tuning for the pipeline.
- Parameters:
**config – The configuration for auto-tuning.
- Returns:
The result of the query.
- configureSplit(**config: Any) Series[Any] ¶
Configure the splits for training the pipeline.
- Parameters:
**config – The configuration for the splits.
- Returns:
The result of the query.
- creation_time() Any ¶
Get the creation time of the pipeline.
- Returns:
The creation time of the pipeline.
- drop(failIfMissing: bool = False) Series[Any] ¶
Drop the pipeline.
- Parameters:
failIfMissing – If True, an error will be thrown if the pipeline does not exist.
- Returns:
The result of the query.
- exists() bool ¶
Check if the pipeline exists.
- Returns:
True if the pipeline exists, False otherwise.
- feature_steps() DataFrame ¶
Get the feature steps of the pipeline.
- Returns:
A DataFrame containing the feature steps of the pipeline.
- name() str ¶
Get the name of the pipeline.
- Returns:
The name of the pipeline.
- node_property_steps() DataFrame ¶
Get the node property steps of the pipeline.
- Returns:
A DataFrame containing the node property steps.
- parameter_space() Series[Any] ¶
Get the parameter space of the pipeline.
- Returns:
A Series containing the parameter space.
- split_config() Series[float] ¶
Get the split configuration of the pipeline.
- Returns:
A Series containing the split configuration.
- train(G: Graph, **config: Any) tuple[MODEL_TYPE, Series[Any]] ¶
Train a model on a given graph using the pipeline.
- Parameters:
G – The graph to train on.
**config – The configuration for training.
- Returns:
A tuple containing the trained model and the result of the query.
- train_estimate(G: Graph, **config: Any) Series[Any] ¶
Estimate the training time for a given graph and configuration.
- Parameters:
G – The graph to train on.
**config – The configuration for training.
- Returns:
The result of the query.
- type() str ¶
Get the type of the pipeline.
- Returns:
The type of the pipeline. It will be one of NodeClassificationPipeline, LinkPredictionPipeline, or NodeRegressionPipeline.