Source code for neo4j_graphrag.embeddings.mistral

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from __future__ import annotations

import os
from typing import Any

from neo4j_graphrag.embeddings.base import Embedder
from neo4j_graphrag.exceptions import EmbeddingsGenerationError

try:
    from mistralai import Mistral
except ImportError:
    Mistral = None  # type: ignore


[docs] class MistralAIEmbeddings(Embedder): """ Mistral AI embeddings class. This class uses the Mistral AI Python client to generate vector embeddings for text data. Args: model (str): The name of the Mistral AI text embedding model to use. Defaults to "mistral-embed". """ def __init__(self, model: str = "mistral-embed", **kwargs: Any) -> None: if Mistral is None: raise ImportError( """Could not import mistralai. Please install it with `pip install "neo4j-graphrag[mistralai]"`.""" ) api_key = kwargs.pop("api_key", None) if api_key is None: api_key = os.getenv("MISTRAL_API_KEY", "") self.model = model self.mistral_client = Mistral(api_key=api_key, **kwargs)
[docs] def embed_query(self, text: str, **kwargs: Any) -> list[float]: """ Generate embeddings for a given query using a Mistral AI text embedding model. Args: text (str): The text to generate an embedding for. **kwargs (Any): Additional keyword arguments to pass to the Mistral AI client. """ embeddings_batch_response = self.mistral_client.embeddings.create( model=self.model, inputs=[text], **kwargs ) if embeddings_batch_response is None or not embeddings_batch_response.data: raise EmbeddingsGenerationError("Failed to retrieve embeddings.") embedding = embeddings_batch_response.data[0].embedding if not isinstance(embedding, list): raise EmbeddingsGenerationError("Embedding is not a list of floats.") return embedding