#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations
import abc
from typing import TYPE_CHECKING, Any, Optional
from neo4j_graphrag.embeddings.base import Embedder
from neo4j_graphrag.exceptions import EmbeddingsGenerationError
from neo4j_graphrag.utils.rate_limit import RateLimitHandler, rate_limit_handler
if TYPE_CHECKING:
    import openai
class BaseOpenAIEmbeddings(Embedder, abc.ABC):
    """
    Abstract base class for OpenAI embeddings.
    """
    client: openai.OpenAI
    def __init__(
        self,
        model: str = "text-embedding-ada-002",
        rate_limit_handler: Optional[RateLimitHandler] = None,
        **kwargs: Any,
    ) -> None:
        try:
            import openai
        except ImportError:
            raise ImportError(
                """Could not import openai python client.
                Please install it with `pip install "neo4j-graphrag[openai]"`."""
            )
        super().__init__(rate_limit_handler)
        self.openai = openai
        self.model = model
        self.client = self._initialize_client(**kwargs)
    @abc.abstractmethod
    def _initialize_client(self, **kwargs: Any) -> Any:
        """
        Initialize the OpenAI client.
        Must be implemented by subclasses.
        """
        pass
    @rate_limit_handler
    def embed_query(self, text: str, **kwargs: Any) -> list[float]:
        """
        Generate embeddings for a given query using an OpenAI text embedding model.
        Args:
            text (str): The text to generate an embedding for.
            **kwargs (Any): Additional arguments to pass to the OpenAI embedding generation function.
        """
        try:
            response = self.client.embeddings.create(
                input=text, model=self.model, **kwargs
            )
            embedding: list[float] = response.data[0].embedding
            return embedding
        except Exception as e:
            raise EmbeddingsGenerationError(
                f"Failed to generate embedding with OpenAI: {e}"
            ) from e
[docs]
class OpenAIEmbeddings(BaseOpenAIEmbeddings):
    """
    OpenAI embeddings class.
    This class uses the OpenAI python client to generate embeddings for text data.
    Args:
        model (str): The name of the OpenAI embedding model to use. Defaults to "text-embedding-ada-002".
        kwargs: All other parameters will be passed to the openai.OpenAI init.
    """
    def _initialize_client(self, **kwargs: Any) -> Any:
        return self.openai.OpenAI(**kwargs) 
[docs]
class AzureOpenAIEmbeddings(BaseOpenAIEmbeddings):
    """
    Azure OpenAI embeddings class.
    This class uses the Azure OpenAI python client to generate embeddings for text data.
    Args:
        model (str): The name of the Azure OpenAI embedding model to use. Defaults to "text-embedding-ada-002".
        kwargs: All other parameters will be passed to the openai.AzureOpenAI init.
    """
    def _initialize_client(self, **kwargs: Any) -> Any:
        return self.openai.AzureOpenAI(**kwargs)