Source code for neo4j_graphrag.embeddings.sentence_transformers
#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from typing import Any, Optional
from neo4j_graphrag.embeddings.base import Embedder
from neo4j_graphrag.exceptions import EmbeddingsGenerationError
from neo4j_graphrag.utils.rate_limit import RateLimitHandler
[docs]
class SentenceTransformerEmbeddings(Embedder):
    def __init__(
        self,
        model: str = "all-MiniLM-L6-v2",
        rate_limit_handler: Optional[RateLimitHandler] = None,
        *args: Any,
        **kwargs: Any,
    ) -> None:
        try:
            import numpy as np
            import sentence_transformers
            import torch
        except ImportError:
            raise ImportError(
                """Could not import sentence_transformers python package.
                Please install it with `pip install "neo4j-graphrag[sentence-transformers]"`."""
            )
        super().__init__(rate_limit_handler)
        self.torch = torch
        self.np = np
        self.model = sentence_transformers.SentenceTransformer(model, *args, **kwargs)
[docs]
    def embed_query(self, text: str) -> Any:
        try:
            result = self.model.encode([text])
            if isinstance(result, self.torch.Tensor) or isinstance(
                result, self.np.ndarray
            ):
                return result.flatten().tolist()
            elif isinstance(result, list) and all(
                isinstance(x, self.torch.Tensor) for x in result
            ):
                return [item for tensor in result for item in tensor.flatten().tolist()]
            else:
                raise ValueError("Unexpected return type from model encoding")
        except Exception as e:
            raise EmbeddingsGenerationError(
                f"Failed to generate embedding with SentenceTransformer: {e}"
            ) from e