Source code for neo4j_graphrag.embeddings.vertexai

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

from typing import Any

from neo4j_graphrag.embeddings.base import Embedder

try:
    import vertexai
except ImportError:
    vertexai = None


[docs] class VertexAIEmbeddings(Embedder): """ Vertex AI embeddings class. This class uses the Vertex AI Python client to generate vector embeddings for text data. Args: model (str): The name of the Vertex AI text embedding model to use. Defaults to "text-embedding-004". """ def __init__(self, model: str = "text-embedding-004") -> None: if vertexai is None: raise ImportError( """Could not import Vertex AI Python client. Please install it with `pip install "neo4j-graphrag[google]"`.""" ) self.vertexai_model = ( vertexai.language_models.TextEmbeddingModel.from_pretrained(model) )
[docs] def embed_query( self, text: str, task_type: str = "RETRIEVAL_QUERY", **kwargs: Any ) -> list[float]: """ Generate embeddings for a given query using a Vertex AI text embedding model. Args: text (str): The text to generate an embedding for. task_type (str): The type of the text embedding task. Defaults to "RETRIEVAL_QUERY". See https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#tasktype for a full list. **kwargs (Any): Additional keyword arguments to pass to the Vertex AI client's get_embeddings method. """ inputs = [vertexai.language_models.TextEmbeddingInput(text, task_type)] embeddings = self.vertexai_model.get_embeddings(inputs, **kwargs) return embeddings[0].values # type: ignore