Source code for neo4j_graphrag.llm.openai_llm

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

import abc
from typing import TYPE_CHECKING, Any, Iterable, Optional

from ..exceptions import LLMGenerationError
from .base import LLMInterface
from .types import LLMResponse

if TYPE_CHECKING:
    import openai
    from openai.types.chat.chat_completion_message_param import (
        ChatCompletionMessageParam,
    )


class BaseOpenAILLM(LLMInterface, abc.ABC):
    client: openai.OpenAI
    async_client: openai.AsyncOpenAI

    def __init__(
        self,
        model_name: str,
        model_params: Optional[dict[str, Any]] = None,
    ):
        """
        Base class for OpenAI LLM.

        Makes sure the openai Python client is installed during init.

        Args:
            model_name (str):
            model_params (str): Parameters like temperature that will be passed to the model when text is sent to it
        """
        try:
            import openai
        except ImportError:
            raise ImportError(
                """Could not import openai Python client.
                Please install it with `pip install "neo4j-graphrag[openai]"`."""
            )
        self.openai = openai
        super().__init__(model_name, model_params)

    def get_messages(
        self,
        input: str,
    ) -> Iterable[ChatCompletionMessageParam]:
        return [
            {"role": "system", "content": input},
        ]

    def invoke(self, input: str) -> LLMResponse:
        """Sends a text input to the OpenAI chat completion model
        and returns the response's content.

        Args:
            input (str): Text sent to the LLM

        Returns:
            LLMResponse: The response from OpenAI.

        Raises:
            LLMGenerationError: If anything goes wrong.
        """
        try:
            response = self.client.chat.completions.create(
                messages=self.get_messages(input),
                model=self.model_name,
                **self.model_params,
            )
            content = response.choices[0].message.content or ""
            return LLMResponse(content=content)
        except self.openai.OpenAIError as e:
            raise LLMGenerationError(e)

    async def ainvoke(self, input: str) -> LLMResponse:
        """Asynchronously sends a text input to the OpenAI chat
        completion model and returns the response's content.

        Args:
            input (str): Text sent to the LLM

        Returns:
            LLMResponse: The response from OpenAI.

        Raises:
            LLMGenerationError: If anything goes wrong.
        """
        try:
            response = await self.async_client.chat.completions.create(
                messages=self.get_messages(input),
                model=self.model_name,
                **self.model_params,
            )
            content = response.choices[0].message.content or ""
            return LLMResponse(content=content)
        except self.openai.OpenAIError as e:
            raise LLMGenerationError(e)


[docs] class OpenAILLM(BaseOpenAILLM): def __init__( self, model_name: str, model_params: Optional[dict[str, Any]] = None, **kwargs: Any, ): """OpenAI LLM Wrapper for the openai Python client LLM. Args: model_name (str): model_params (str): Parameters like temperature that will be passed to the model when text is sent to it kwargs: All other parameters will be passed to the openai.OpenAI init. """ super().__init__(model_name, model_params) self.client = self.openai.OpenAI(**kwargs) self.async_client = self.openai.AsyncOpenAI(**kwargs)
[docs] class AzureOpenAILLM(BaseOpenAILLM): def __init__( self, model_name: str, model_params: Optional[dict[str, Any]] = None, **kwargs: Any, ): """Azure OpenAI LLM. Use this class when using an OpenAI model hosted on Microsoft Azure. Args: model_name (str): model_params (str): Parameters like temperature that will be passed to the model when text is sent to it kwargs: All other parameters will be passed to the openai.OpenAI init. """ super().__init__(model_name, model_params) self.client = self.openai.AzureOpenAI(**kwargs) self.async_client = self.openai.AsyncAzureOpenAI(**kwargs)