# Copyright (c) "Neo4j"
# Neo4j Sweden AB [https://neo4j.com]
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# https://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, Callable, Optional
import neo4j
from pydantic import ValidationError
from neo4j_graphrag.embeddings.base import Embedder
from neo4j_graphrag.exceptions import (
EmbeddingRequiredError,
RetrieverInitializationError,
SearchValidationError,
)
from neo4j_graphrag.retrievers.base import ExternalRetriever
from neo4j_graphrag.retrievers.external.pinecone.types import (
PineconeClientModel,
PineconeNeo4jRetrieverModel,
PineconeSearchModel,
)
from neo4j_graphrag.retrievers.external.utils import get_match_query
from neo4j_graphrag.types import (
EmbedderModel,
Neo4jDriverModel,
RawSearchResult,
RetrieverResultItem,
)
if TYPE_CHECKING:
from pinecone import Pinecone
logger = logging.getLogger(__name__)
[docs]
class PineconeNeo4jRetriever(ExternalRetriever):
"""
Provides retrieval method using vector search over embeddings with a Pinecone database.
If an embedder is provided, it needs to have the required Embedder type.
Example:
.. code-block:: python
from neo4j import GraphDatabase
from neo4j_graphrag.retrievers import PineconeNeo4jRetriever
from pinecone import Pinecone
with GraphDatabase.driver(NEO4J_URL, auth=NEO4J_AUTH) as neo4j_driver:
pc_client = Pinecone(PC_API_KEY)
embedder = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
retriever = PineconeNeo4jRetriever(
driver=neo4j_driver,
client=pc_client,
index_name="jeopardy",
id_property_neo4j="id",
embedder=embedder,
)
result = retriever.search(query_text="biology", top_k=2)
Args:
driver (neo4j.Driver): The Neo4j Python driver.
client (Pinecone): The Pinecone client object.
index_name (str): The name of the Pinecone index.
id_property_neo4j (str): The name of the Neo4j node property that's used as the identifier for relating matches from Pinecone to Neo4j nodes.
embedder (Optional[Embedder]): Embedder object to embed query text.
return_properties (Optional[list[str]]): List of node properties to return.
retrieval_query (str): Cypher query that gets appended.
result_formatter (Optional[Callable[[neo4j.Record], RetrieverResultItem]]): Function to transform a neo4j.Record to a RetrieverResultItem.
neo4j_database (Optional[str]): The name of the Neo4j database. If not provided, this defaults to the server's default database ("neo4j" by default) (`see reference to documentation <https://neo4j.com/docs/operations-manual/current/database-administration/#manage-databases-default>`_).
Raises:
RetrieverInitializationError: If validation of the input arguments fail.
"""
def __init__(
self,
driver: neo4j.Driver,
client: Pinecone,
index_name: str,
id_property_neo4j: str,
embedder: Optional[Embedder] = None,
return_properties: Optional[list[str]] = None,
retrieval_query: Optional[str] = None,
result_formatter: Optional[
Callable[[neo4j.Record], RetrieverResultItem]
] = None,
neo4j_database: Optional[str] = None,
):
try:
driver_model = Neo4jDriverModel(driver=driver)
client_model = PineconeClientModel(client=client)
embedder_model = EmbedderModel(embedder=embedder) if embedder else None
validated_data = PineconeNeo4jRetrieverModel(
driver_model=driver_model,
client_model=client_model,
index_name=index_name,
id_property_neo4j=id_property_neo4j,
embedder_model=embedder_model,
return_properties=return_properties,
retrieval_query=retrieval_query,
result_formatter=result_formatter,
neo4j_database=neo4j_database,
)
except ValidationError as e:
raise RetrieverInitializationError(e.errors()) from e
super().__init__(
driver=driver,
id_property_external="id",
id_property_neo4j=validated_data.id_property_neo4j,
neo4j_database=neo4j_database,
)
self.driver = validated_data.driver_model.driver
self.client = validated_data.client_model.client
self.index_name = validated_data.index_name
self.index = self.client.Index(index_name)
self.embedder = (
validated_data.embedder_model.embedder
if validated_data.embedder_model
else None
)
self.return_properties = validated_data.return_properties
self.retrieval_query = validated_data.retrieval_query
self.result_formatter = validated_data.result_formatter
def get_search_results(
self,
query_vector: Optional[list[float]] = None,
query_text: Optional[str] = None,
top_k: int = 5,
**kwargs: Any,
) -> RawSearchResult:
"""Get the top_k nearest neighbor embeddings using Pinecone for either provided query_vector or query_text.
Both query_vector and query_text can be provided.
If query_vector is provided, then it will be preferred over the embedded query_text
for the vector search.
If query_text is provided, then it will check if an embedder is provided and use it to generate the query_vector.
See the following documentation for more details:
- `Query a vector index <https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-query>`_
- `db.index.vector.queryNodes() <https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_vector_queryNodes>`_
- `db.index.fulltext.queryNodes() <https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_fulltext_querynodes>`_
Example:
.. code-block:: python
from neo4j import GraphDatabase
from neo4j_graphrag.retrievers import PineconeNeo4jRetriever
from pinecone import Pinecone
with GraphDatabase.driver(NEO4J_URL, auth=NEO4J_AUTH) as neo4j_driver:
pc_client = Pinecone(PC_API_KEY)
retriever = PineconeNeo4jRetriever(
driver=neo4j_driver,
client=pc_client,
index_name="jeopardy",
id_property_neo4j="id"
)
biology_embedding = ...
retriever.search(query_vector=biology_embedding, top_k=2)
Args:
query_text (str): The text to get the closest neighbors of.
query_vector (Optional[list[float]], optional): The vector embeddings to get the closest neighbors of. Defaults to None.
top_k (Optional[int]): The number of neighbors to return. Defaults to 5.
Raises:
SearchValidationError: If validation of the input arguments fail.
EmbeddingRequiredError: If no embedder is provided when using text as an input.
Returns:
RawSearchResult: The results of the search query as a list of neo4j.Record and an optional metadata dict
"""
pinecone_filter = kwargs.get("pinecone_filter")
try:
validated_data = PineconeSearchModel(
query_vector=query_vector,
query_text=query_text,
top_k=top_k,
pinecone_filter=pinecone_filter,
)
except ValidationError as e:
raise SearchValidationError(e.errors()) from e
if validated_data.query_text:
if self.embedder:
query_vector = self.embedder.embed_query(validated_data.query_text)
logger.debug("Locally generated query vector: %s", query_vector)
else:
logger.error("No embedder provided for query_text.")
raise EmbeddingRequiredError("No embedder provided for query_text.")
response = self.index.query(
vector=query_vector,
top_k=validated_data.top_k,
filter=validated_data.pinecone_filter,
)
result_tuples = [
[f"{o[self.id_property_external]}", o["score"] or 0.0]
for o in response["matches"]
]
search_query = get_match_query(
return_properties=self.return_properties,
retrieval_query=self.retrieval_query,
)
parameters = {
"match_params": result_tuples,
"id_property": self.id_property_neo4j,
}
logger.debug("Pinecone Store Cypher parameters: %s", parameters)
logger.debug("Pinecone Store Cypher query: %s", search_query)
records, _, _ = self.driver.execute_query(
search_query,
parameters,
database_=self.neo4j_database,
routing_=neo4j.RoutingControl.READ,
)
return RawSearchResult(records=records)