Source code for neo4j_graphrag.retrievers.external.pinecone.pinecone

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

import logging
from typing import TYPE_CHECKING, Any, Callable, Optional

import neo4j
from pydantic import ValidationError

from neo4j_graphrag.embeddings.base import Embedder
from neo4j_graphrag.exceptions import (
    EmbeddingRequiredError,
    RetrieverInitializationError,
    SearchValidationError,
)
from neo4j_graphrag.retrievers.base import ExternalRetriever
from neo4j_graphrag.retrievers.external.pinecone.types import (
    PineconeClientModel,
    PineconeNeo4jRetrieverModel,
    PineconeSearchModel,
)
from neo4j_graphrag.retrievers.external.utils import get_match_query
from neo4j_graphrag.types import (
    EmbedderModel,
    Neo4jDriverModel,
    RawSearchResult,
    RetrieverResultItem,
)

if TYPE_CHECKING:
    from pinecone import Pinecone

logger = logging.getLogger(__name__)


[docs] class PineconeNeo4jRetriever(ExternalRetriever): """ Provides retrieval method using vector search over embeddings with a Pinecone database. If an embedder is provided, it needs to have the required Embedder type. Example: .. code-block:: python from neo4j import GraphDatabase from neo4j_graphrag.retrievers import PineconeNeo4jRetriever from pinecone import Pinecone with GraphDatabase.driver(NEO4J_URL, auth=NEO4J_AUTH) as neo4j_driver: pc_client = Pinecone(PC_API_KEY) embedder = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") retriever = PineconeNeo4jRetriever( driver=neo4j_driver, client=pc_client, index_name="jeopardy", id_property_neo4j="id", embedder=embedder, ) result = retriever.search(query_text="biology", top_k=2) Args: driver (neo4j.Driver): The Neo4j Python driver. client (Pinecone): The Pinecone client object. index_name (str): The name of the Pinecone index. id_property_neo4j (str): The name of the Neo4j node property that's used as the identifier for relating matches from Pinecone to Neo4j nodes. embedder (Optional[Embedder]): Embedder object to embed query text. return_properties (Optional[list[str]]): List of node properties to return. retrieval_query (str): Cypher query that gets appended. result_formatter (Optional[Callable[[neo4j.Record], RetrieverResultItem]]): Function to transform a neo4j.Record to a RetrieverResultItem. neo4j_database (Optional[str]): The name of the Neo4j database. If not provided, this defaults to the server's default database ("neo4j" by default) (`see reference to documentation <https://neo4j.com/docs/operations-manual/current/database-administration/#manage-databases-default>`_). Raises: RetrieverInitializationError: If validation of the input arguments fail. """ def __init__( self, driver: neo4j.Driver, client: Pinecone, index_name: str, id_property_neo4j: str, embedder: Optional[Embedder] = None, return_properties: Optional[list[str]] = None, retrieval_query: Optional[str] = None, result_formatter: Optional[ Callable[[neo4j.Record], RetrieverResultItem] ] = None, neo4j_database: Optional[str] = None, ): try: driver_model = Neo4jDriverModel(driver=driver) client_model = PineconeClientModel(client=client) embedder_model = EmbedderModel(embedder=embedder) if embedder else None validated_data = PineconeNeo4jRetrieverModel( driver_model=driver_model, client_model=client_model, index_name=index_name, id_property_neo4j=id_property_neo4j, embedder_model=embedder_model, return_properties=return_properties, retrieval_query=retrieval_query, result_formatter=result_formatter, neo4j_database=neo4j_database, ) except ValidationError as e: raise RetrieverInitializationError(e.errors()) from e super().__init__( driver=driver, id_property_external="id", id_property_neo4j=validated_data.id_property_neo4j, neo4j_database=neo4j_database, ) self.driver = validated_data.driver_model.driver self.client = validated_data.client_model.client self.index_name = validated_data.index_name self.index = self.client.Index(index_name) self.embedder = ( validated_data.embedder_model.embedder if validated_data.embedder_model else None ) self.return_properties = validated_data.return_properties self.retrieval_query = validated_data.retrieval_query self.result_formatter = validated_data.result_formatter def get_search_results( self, query_vector: Optional[list[float]] = None, query_text: Optional[str] = None, top_k: int = 5, **kwargs: Any, ) -> RawSearchResult: """Get the top_k nearest neighbor embeddings using Pinecone for either provided query_vector or query_text. Both query_vector and query_text can be provided. If query_vector is provided, then it will be preferred over the embedded query_text for the vector search. If query_text is provided, then it will check if an embedder is provided and use it to generate the query_vector. See the following documentation for more details: - `Query a vector index <https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-query>`_ - `db.index.vector.queryNodes() <https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_vector_queryNodes>`_ - `db.index.fulltext.queryNodes() <https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_fulltext_querynodes>`_ Example: .. code-block:: python from neo4j import GraphDatabase from neo4j_graphrag.retrievers import PineconeNeo4jRetriever from pinecone import Pinecone with GraphDatabase.driver(NEO4J_URL, auth=NEO4J_AUTH) as neo4j_driver: pc_client = Pinecone(PC_API_KEY) retriever = PineconeNeo4jRetriever( driver=neo4j_driver, client=pc_client, index_name="jeopardy", id_property_neo4j="id" ) biology_embedding = ... retriever.search(query_vector=biology_embedding, top_k=2) Args: query_text (str): The text to get the closest neighbors of. query_vector (Optional[list[float]], optional): The vector embeddings to get the closest neighbors of. Defaults to None. top_k (Optional[int]): The number of neighbors to return. Defaults to 5. Raises: SearchValidationError: If validation of the input arguments fail. EmbeddingRequiredError: If no embedder is provided when using text as an input. Returns: RawSearchResult: The results of the search query as a list of neo4j.Record and an optional metadata dict """ pinecone_filter = kwargs.get("pinecone_filter") try: validated_data = PineconeSearchModel( query_vector=query_vector, query_text=query_text, top_k=top_k, pinecone_filter=pinecone_filter, ) except ValidationError as e: raise SearchValidationError(e.errors()) from e if validated_data.query_text: if self.embedder: query_vector = self.embedder.embed_query(validated_data.query_text) logger.debug("Locally generated query vector: %s", query_vector) else: logger.error("No embedder provided for query_text.") raise EmbeddingRequiredError("No embedder provided for query_text.") response = self.index.query( vector=query_vector, top_k=validated_data.top_k, filter=validated_data.pinecone_filter, ) result_tuples = [ [f"{o[self.id_property_external]}", o["score"] or 0.0] for o in response["matches"] ] search_query = get_match_query( return_properties=self.return_properties, retrieval_query=self.retrieval_query, ) parameters = { "match_params": result_tuples, "id_property": self.id_property_neo4j, } logger.debug("Pinecone Store Cypher parameters: %s", parameters) logger.debug("Pinecone Store Cypher query: %s", search_query) records, _, _ = self.driver.execute_query( search_query, parameters, database_=self.neo4j_database, routing_=neo4j.RoutingControl.READ, ) return RawSearchResult(records=records)