ChromaDB
Here is a list of all available ChromaDB procedures, note that the list and the signature procedures are consistent with the others, like the Qdrant ones:
| name | description | 
|---|---|
apoc.vectordb.chroma.info(hostOrKey, collection, $config)  | 
Get information about the specified existing collection or throws an error 500 if it does not exist  | 
apoc.vectordb.chroma.createCollection(hostOrKey, collection, similarity, size, $config)  | 
Creates a collection, with the name specified in the 2nd parameter, and with the specified   | 
apoc.vectordb.chroma.deleteCollection(hostOrKey, collection, $config)  | 
Deletes a collection with the name specified in the 2nd parameter.
    The default endpoint is   | 
apoc.vectordb.chroma.upsert(hostOrKey, collection, vectors, $config)  | 
Upserts, in the collection with the name specified in the 2nd parameter, the vectors [{id: 'id', vector: '<vectorDb>', medatada: '<metadata>'}].
    The default endpoint is   | 
apoc.vectordb.chroma.delete(hostOrKey, collection, ids, $config)  | 
Deletes the vectors with the specified   | 
apoc.vectordb.chroma.get(hostOrKey, collection, ids, $config)  | 
Gets the vectors with the specified   | 
apoc.vectordb.chroma.query(hostOrKey, collection, vector, filter, limit, $config)  | 
Retrieve closest vectors from the defined   | 
apoc.vectordb.chroma.getAndUpdate(hostOrKey, collection, ids, $config)  | 
Gets the vectors with the specified   | 
apoc.vectordb.chroma.queryAndUpdate(hostOrKey, collection, vector, filter, limit, $config)  | 
Retrieve closest vectors from the defined   | 
where the 1st parameter can be a key defined by the apoc config apoc.chroma.<key>.host=myHost.
With hostOrKey=null, the default is 'http://localhost:8000'.
Examples
CALL apoc.vectordb.chroma.info(hostOrKey, 'test_collection', {<optional config>})
| value | 
|---|
{"name": "test_collection", "metadata": {"size": 4, "hnsw:space": "cosine"}, "database": "default_database", "id": "74ebe008-1ccb-4d3d-8c5d-cdd7cfa526c2", "tenant": "default_tenant"}  | 
CALL apoc.vectordb.chroma.createCollection($host, 'test_collection', 'Cosine', 4, {<optional config>})
| name | metadata | database | id | tenant | 
|---|---|---|---|---|
test_collection  | 
{"size": 4, "hnsw:space": "cosine"}  | 
default_database  | 
9c046861-f46f-417d-bd01-ca8c9f99aee5  | 
default_tenant  | 
CALL apoc.vectordb.chroma.deleteCollection($host, '<collection_id>', {<optional config>})
which returns an empty result.
CALL apoc.vectordb.qdrant.upsert($host, '<collection_id>',
    [
        {id: 1, vector: [0.05, 0.61, 0.76, 0.74], metadata: {city: "Berlin", foo: "one"}, text: 'ajeje'},
        {id: 2, vector: [0.19, 0.81, 0.75, 0.11], metadata: {city: "London", foo: "two"}, text: 'brazorf'}
    ],
    {<optional config>})
which returns an empty result.
CALL apoc.vectordb.chroma.get($host, '<collection_id>', ['1','2'], {<optional config>}), text
| score | metadata | id | vector | text | entity | 
|---|---|---|---|---|---|
null  | 
{city: "Berlin", foo: "one"}  | 
null  | 
null  | 
null  | 
null  | 
null  | 
{city: "Berlin", foo: "two"}  | 
null  | 
null  | 
null  | 
null  | 
{allResults: true}CALL apoc.vectordb.chroma.get($host, '<collection_id>', ['1','2'], {<optional config>}), text
| score | metadata | id | vector | text | entity | 
|---|---|---|---|---|---|
null  | 
{city: "Berlin", foo: "one"}  | 
1  | 
[…]  | 
ajeje  | 
null  | 
null  | 
{city: "Berlin", foo: "two"}  | 
2  | 
[…]  | 
brazorf  | 
null  | 
CALL apoc.vectordb.chroma.queryAndUpdate($host,
    '<collection_id>',
    [0.2, 0.1, 0.9, 0.7],
    {city: 'London'},
    5,
    {allResults: true, <optional config>}), text
| score | metadata | id | vector | text | 
|---|---|---|---|---|
1,  | 
{city: "Berlin", foo: "one"}  | 
1  | 
[…]  | 
ajeje  | 
0.1  | 
{city: "Berlin", foo: "two"}  | 
2  | 
[…]  | 
brazorf  | 
We can define a mapping, to fetch the associated nodes and relationships and optionally create them, by leveraging the vector metadata.
For example, if we have created 2 vectors with the above upsert procedures,
we can populate some existing nodes (i.e. (:Test {myId: 'one'}) and (:Test {myId: 'two'})):
CALL apoc.vectordb.chroma.queryAndUpdate($host, '<collection_id>',
    [0.2, 0.1, 0.9, 0.7],
    {},
    5,
    { mapping: {
            embeddingKey: "vect",
            nodeLabel: "Test",
            entityKey: "myId",
            metadataKey: "foo"
        }
    })
which populates the two nodes as: (:Test {myId: 'one', city: 'Berlin', vect: [vector1]}) and (:Test {myId: 'two', city: 'London', vect: [vector2]}),
which will be returned in the entity column result.
We can also set the mapping configuration mode to CREATE_IF_MISSING (which creates nodes if not exist), READ_ONLY (to search for nodes/rels, without making updates) or UPDATE_EXISTING (default behavior):
CALL apoc.vectordb.chroma.queryAndUpdate($host, '<collection_id>',
    [0.2, 0.1, 0.9, 0.7],
    {},
    5,
    { mapping: {
            mode: "CREATE_IF_MISSING",
            embeddingKey: "vect",
            nodeLabel: "Test",
            entityKey: "myId",
            metadataKey: "foo"
        }
    })
which creates and 2 new nodes as above.
Or, we can populate an existing relationship (i.e. (:Start)-[:TEST {myId: 'one'}]→(:End) and (:Start)-[:TEST {myId: 'two'}]→(:End)):
CALL apoc.vectordb.chroma.queryAndUpdate($host, '<collection_id>',
    [0.2, 0.1, 0.9, 0.7],
    {},
    5,
    { mapping: {
            embeddingKey: "vect",
            relType: "TEST",
            entityKey: "myId",
            metadataKey: "foo"
        }
    })
which populates the two relationships as: ()-[:TEST {myId: 'one', city: 'Berlin', vect: [vector1]}]-()
and ()-[:TEST {myId: 'two', city: 'London', vect: [vector2]}]-(),
which will be returned in the entity column result.
We can also use mapping for apoc.vectordb.chroma.query procedure, to search for nodes/rels fitting label/type and metadataKey, without making updates
(i.e. equivalent to *.queryOrUpdate procedure with mapping config having mode: "READ_ONLY").
For example, with the previous relationships, we can execute the following procedure, which just return the relationships in the column rel:
CALL apoc.vectordb.weaviate.query($host, 'test_collection',
    [0.2, 0.1, 0.9, 0.7],
    {},
    5,
    { fields: ["city", "foo"],
      mapping: {
        relType: "TEST",
        entityKey: "myId",
        metadataKey: "foo"
      }
    })
| 
 We can use mapping with   | 
| 
 To optimize performances, we can choose what to   | 
It is possible to execute vector db procedures together with the apoc.ml.rag as follow:
CALL apoc.vectordb.chroma.getAndUpdate($host, $collection, [<id1>, <id2>], $conf) YIELD node, metadata, id, vector
WITH collect(node) as paths
CALL apoc.ml.rag(paths, $attributes, $question, $confPrompt) YIELD value
RETURN value
which returns a string that answers the $question by leveraging the embeddings of the db vector.
CALL apoc.vectordb.chroma.delete($host, '<collection_id>', [1,2], {<optional config>})
which returns an array of strings of deleted ids. For example, ["1", "2"]