PageRank
Introduction
The PageRank algorithm measures the importance of each node within the graph, based on the number of incoming relationships and the importance of the corresponding source nodes. The underlying assumption, roughly speaking, is that a page is only as important as the pages that link to it.
PageRank is introduced in the original Google paper as a function that solves the following equation:
where,
-
we assume that a page A has pages T1 to Tn which point to it.
-
d is a damping factor which can be set between 0 (inclusive) and 1 (exclusive). It is usually set to 0.85.
-
C(A) is defined as the number of links going out of page A.
This equation is used to iteratively update a candidate solution and arrive at an approximate solution to the same equation.
For more information on this algorithm, see:
Considerations
There are some things to be aware of when using the PageRank algorithm:
-
If there are no relationships from within a group of pages to outside the group, then the group is considered a spider trap.
-
Rank sink can occur when a network of pages is forming an infinite cycle.
-
Dead-ends occur when pages have no outgoing relationship.
Changing the damping factor can help with all the considerations above. It can be interpreted as a probability of a web surfer to sometimes jump to a random page and therefore not getting stuck in sinks.
Syntax
This section covers the syntax used to execute the PageRank algorithm.
CALL graph.page_rank(
'CPU_X64_XS', (1)
{
['defaultTablePrefix': '...',] (2)
'project': {...}, (3)
'compute': {...}, (4)
'write': {...} (5)
}
);
1 | Compute pool selector. |
2 | Optional prefix for table references. |
3 | Project config. |
4 | Compute config. |
5 | Write config. |
Name | Type | Default | Optional | Description |
---|---|---|---|---|
computePoolSelector |
String |
|
no |
The selector for the compute pool on which to run the Page Rank job. |
configuration |
Map |
|
no |
Configuration for graph project, algorithm compute and result write back. |
The configuration map consists of the following three entries.
For more details on below Project configuration, refer to the Project documentation. |
Name | Type |
---|---|
nodeTables |
List of node tables. |
relationshipTables |
Map of relationship types to relationship tables. |
Name | Type | Default | Optional | Description |
---|---|---|---|---|
mutateProperty |
String |
|
yes |
The node property that will be written back to the Snowflake database. |
dampingFactor |
Float |
|
yes |
The damping factor of the Page Rank calculation. Must be in [0, 1). |
maxIterations |
Integer |
|
yes |
The maximum number of iterations of Page Rank to run. |
tolerance |
Float |
|
yes |
Minimum change in scores between iterations. If all scores change less than the tolerance value the result is considered stable and the algorithm returns. |
relationshipWeightProperty |
String |
|
yes |
Name of the relationship property to use as weights. If unspecified, the algorithm runs unweighted. |
sourceNodes |
Node/Number or List or List of pairs as lists |
|
yes |
The nodes or node ids or node-bias pairs to use for computing Personalized Page Rank. To use different bias for different source nodes, use the use the syntax: |
scaler |
String or Map |
|
yes |
The name of the scaler applied for the final scores. Supported values are |
For more details on below Write configuration, refer to the Write documentation. |
Name | Type | Default | Optional | Description |
---|---|---|---|---|
nodeLabel |
String |
|
no |
Node label in the in-memory graph from which to write a node property. |
nodeProperty |
String |
|
yes |
The node property that will be written back to the Snowflake database. |
outputTable |
String |
|
no |
Table in Snowflake database to which node properties are written. |
Examples
In this section we will show examples of running the PageRank algorithm on a concrete graph. The intention is to illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real setting. We will do this on a small web network graph of a handful nodes connected in a particular pattern. The example graph looks like this:
CREATE OR REPLACE TABLE EXAMPLE_DB.DATA_SCHEMA.PAGES (NODEID STRING);
INSERT INTO EXAMPLE_DB.DATA_SCHEMA.PAGES VALUES
('Home'),
('About'),
('Product'),
('Links'),
('Site A'),
('Site B'),
('Site C'),
('Site D');
CREATE OR REPLACE TABLE EXAMPLE_DB.DATA_SCHEMA.LINKS (SOURCENODEID STRING, TARGETNODEID STRING, WEIGHT DOUBLE);
INSERT INTO EXAMPLE_DB.DATA_SCHEMA.LINKS VALUES
('Home', 'About', 0.2),
('Home', 'Links', 0.2),
('Home', 'Product', 0.6),
('About', 'Home', 1.0),
('Product', 'Home', 1.0),
('Site A', 'Home', 1.0),
('Site B', 'Home', 1.0),
('Site C', 'Home', 1.0),
('Site D', 'Home', 1.0),
('Links', 'Home', 0.8),
('Links', 'Site A', 0.05),
('Links', 'Site B', 0.05),
('Links', 'Site C', 0.05),
('Links', 'Site D', 0.05);
This graph represents eight pages, linking to one another.
Each relationship has a property called weight
, which describes the importance of the relationship.
Run job
Running a PageRank job involves the three steps: Project, Compute and Write.
To run the query, there is a required setup of grants for the application, your consumer role and your environment. Please see the Getting started page for more on this.
We also assume that the application name is the default Neo4j_Graph_Analytics. If you chose a different app name during installation, please replace it with that.
CALL Neo4j_Graph_Analytics.graph.page_rank('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'PAGES' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'PAGES',
'targetTable': 'PAGES'
}
}
},
'compute': {
'mutateProperty': 'score'
},
'write': [{
'nodeLabel': 'PAGES',
'outputTable': 'PAGES_CENTRALITY',
'nodeProperty': 'score'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_389ecfb0408e407187049486effebf43 |
2025-06-25 09:48:14.968 |
2025-06-25 09:48:20.425 |
{ "page_rank_1": { "centralityDistribution": { "max": 3.215682983398437, "mean": 0.9612393379211426, "min": 0.32785606384277344, "p50": 0.32785606384277344, "p75": 1.0542736053466797, "p90": 3.2156810760498047, "p95": 3.2156810760498047, "p99": 3.2156810760498047, "p999": 3.2156810760498047 }, "computeMillis": 106, "configuration": { "concurrency": 2, "dampingFactor": 0.85, "jobId": "11d69048-32b1-49f0-8b93-574a54d55b71", "logProgress": true, "maxIterations": 20, "mutateProperty": "score", "nodeLabels": ["*"], "relationshipTypes": ["*"], "scaler": "NONE", "sourceNodes": [], "sudo": false, "tolerance": 1.000000000000000e-07 }, "didConverge": false, "mutateMillis": 3, "nodePropertiesWritten": 8, "postProcessingMillis": 53, "preProcessingMillis": 9, "ranIterations": 20 }, "project_1": { "graphName": "snowgraph", "nodeCount": 8, "nodeMillis": 291, "relationshipCount": 14, "relationshipMillis": 442, "totalMillis": 733 }, "write_node_property_1": { "exportMillis": 2100, "nodeLabel": "PAGES", "nodeProperty": "score", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY", "propertiesExported": 8 } } |
The returned result contains information about the job execution and result distribution. The centrality distribution histogram can be useful for inspecting the computed scores or perform normalizations. Additionally, the centrality score for each of the seven nodes has been written back to the Snowflake database. We can query it like so:
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY ORDER BY score DESC;
NODEID | SCORE |
---|---|
Home |
3.215682 |
About |
1.054270055 |
Product |
1.054270055 |
Links |
1.054270055 |
Site A |
0.3278578964 |
Site B |
0.3278578964 |
Site C |
0.3278578964 |
Site D |
0.3278578964 |
The above query is running the PageRank algorithm mode as unweighted
and the returned scores are not normalized.
Below, one can find an example for weighted graphs.
Another example shows the application of a scaler to normalize the final scores.
Weighted
By default, the algorithm is considering the relationships of the graph to be unweighted
, to change this behaviour we can use configuration parameter called relationshipWeightProperty
.
In the weighted
case, the previous score of a node send to its neighbours, is multiplied by the relationship weight and then divided by the sum of the weights of its outgoing relationships.
If the value of the relationship property is negative, it will be ignored during computation.
Below is an example of running the algorithm using the relationship property.
CALL Neo4j_Graph_Analytics.graph.page_rank('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'PAGES' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'PAGES',
'targetTable': 'PAGES'
}
}
},
'compute': {
'mutateProperty': 'score',
'maxIterations': 20,
'dampingFactor': 0.85,
'relationshipWeightProperty': 'WEIGHT'
},
'write': [{
'nodeLabel': 'PAGES',
'outputTable': 'PAGES_CENTRALITY',
'nodeProperty': 'score'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_acdcd121d84c49bdb50739ce7c1fe07f |
2025-06-25 09:54:25.390 |
2025-06-25 09:54:30.822 |
{ "page_rank_1": { "centralityDistribution": { "max": 3.537521362304687, "mean": 0.9612407684326172, "min": 0.18152618408203125, "p50": 0.18152618408203125, "p75": 0.7452611923217773, "p90": 3.537520408630371, "p95": 3.537520408630371, "p99": 3.537520408630371, "p999": 3.537520408630371 }, "computeMillis": 101, "configuration": { "concurrency": 2, "dampingFactor": 0.85, "jobId": "65745cab-4ed1-4477-b2cb-4997e66ea97e", "logProgress": true, "maxIterations": 20, "mutateProperty": "score", "nodeLabels": ["*"], "relationshipTypes": ["*"], "relationshipWeightProperty": "WEIGHT", "scaler": "NONE", "sourceNodes": [], "sudo": false, "tolerance": 1.000000000000000e-07 }, "didConverge": false, "mutateMillis": 2, "nodePropertiesWritten": 8, "postProcessingMillis": 58, "preProcessingMillis": 10, "ranIterations": 20 }, "project_1": { "graphName": "snowgraph", "nodeCount": 8, "nodeMillis": 139, "relationshipCount": 14, "relationshipMillis": 593, "totalMillis": 732 }, "write_node_property_1": { "exportMillis": 1824, "nodeLabel": "PAGES", "nodeProperty": "score", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY", "propertiesExported": 8 } } |
Compared to the unweighted example, we see that Product has gained ranking, as expected:
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY ORDER BY score DESC;
NODEID | SCORE |
---|---|
Home |
3.537510284 |
Product |
1.935783829 |
About |
0.7452612764 |
Links |
0.7452612764 |
Site A |
0.1815267714 |
Site B |
0.1815267714 |
Site C |
0.1815267714 |
Site D |
0.1815267714 |
Tolerance
The tolerance
configuration parameter denotes the minimum change in scores between iterations.
If all scores change less than the configured tolerance
value the result stabilises, and the algorithm returns.
CALL Neo4j_Graph_Analytics.graph.page_rank('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'PAGES' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'PAGES',
'targetTable': 'PAGES'
}
}
},
'compute': {
'mutateProperty': 'score',
'maxIterations': 20,
'dampingFactor': 0.85,
'tolerance': 0.1
},
'write': [{
'nodeLabel': 'PAGES',
'outputTable': 'PAGES_CENTRALITY',
'nodeProperty': 'score'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_3c7ea7a540594934b06adef0b1e8a55a |
2025-06-25 09:59:32.257 |
2025-06-25 09:59:37.375 |
{ "page_rank_1": { "centralityDistribution": { "max": 1.581245422363281, "mean": 0.5387876033782959, "min": 0.2337493896484375, "p50": 0.2337493896484375, "p75": 0.5980215072631836, "p90": 1.5812444686889648, "p95": 1.5812444686889648, "p99": 1.5812444686889648, "p999": 1.5812444686889648 }, "computeMillis": 69, "configuration": { "concurrency": 2, "dampingFactor": 0.85, "jobId": "b1013874-2865-4561-bf05-b7ebcba371e3", "logProgress": true, "maxIterations": 20, "mutateProperty": "score", "nodeLabels": ["*"], "relationshipTypes": ["*"], "scaler": "NONE", "sourceNodes": [], "sudo": false, "tolerance": 0.1 }, "didConverge": true, "mutateMillis": 5, "nodePropertiesWritten": 8, "postProcessingMillis": 78, "preProcessingMillis": 15, "ranIterations": 6 }, "project_1": { "graphName": "snowgraph", "nodeCount": 8, "nodeMillis": 151, "relationshipCount": 14, "relationshipMillis": 398, "totalMillis": 549 }, "write_node_property_1": { "exportMillis": 1810, "nodeLabel": "PAGES", "nodeProperty": "score", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY", "propertiesExported": 8 } } |
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY ORDER BY score DESC;
NODEID | SCORE |
---|---|
Home |
1.581245067 |
About |
0.5980194356 |
Product |
0.5980194356 |
Links |
0.5980194356 |
Site A |
0.2337495515 |
Site B |
0.2337495515 |
Site C |
0.2337495515 |
Site D |
0.2337495515 |
Comparing to the original example, we get comparable results in a third of the time—six iterations instead of 20.
Damping Factor
The damping factor configuration parameter accepts values between zero (inclusive) and 1 (exclusive). If its value is too high, then problems of sinks and spider traps may occur, and the values may oscillate so that the algorithm does not converge. If it’s too low, then all scores are pushed towards 1, and the result will not sufficiently reflect the structure of the graph.
CALL Neo4j_Graph_Analytics.graph.page_rank('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'PAGES' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'PAGES',
'targetTable': 'PAGES'
}
}
},
'compute': {
'mutateProperty': 'score',
'maxIterations': 20,
'dampingFactor': 0.05
},
'write': [{
'nodeLabel': 'PAGES',
'outputTable': 'PAGES_CENTRALITY',
'nodeProperty': 'score'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_199788cefb85415aa435e07b4f0b16a7 |
2025-06-25 10:03:45.996 |
2025-06-25 10:03:51.061 |
{ "page_rank_1": { "centralityDistribution": { "max": 1.2487335205078123, "mean": 0.999997615814209, "min": 0.9597053527832031, "p50": 0.9597053527832031, "p75": 0.9708099365234375, "p90": 1.2487297058105469, "p95": 1.2487297058105469, "p99": 1.2487297058105469, "p999": 1.2487297058105469 }, "computeMillis": 76, "configuration": { "concurrency": 2, "dampingFactor": 0.05, "jobId": "9071a105-5dde-46ce-898e-f520b394f6c0", "logProgress": true, "maxIterations": 20, "mutateProperty": "score", "nodeLabels": ["*"], "relationshipTypes": ["*"], "scaler": "NONE", "sourceNodes": [], "sudo": false, "tolerance": 1.000000000000000e-07 }, "didConverge": true, "mutateMillis": 2, "nodePropertiesWritten": 8, "postProcessingMillis": 24, "preProcessingMillis": 20, "ranIterations": 6 }, "project_1": { "graphName": "snowgraph", "nodeCount": 8, "nodeMillis": 188, "relationshipCount": 14, "relationshipMillis": 369, "totalMillis": 557 }, "write_node_property_1": { "exportMillis": 1934, "nodeLabel": "PAGES", "nodeProperty": "score", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY", "propertiesExported": 8 } } |
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY ORDER BY score DESC;
NODEID | SCORE |
---|---|
Home |
1.248730943 |
About |
0.9708121819 |
Product |
0.9708121819 |
Links |
0.9708121819 |
Site A |
0.9597081216 |
Site B |
0.9597081216 |
Site C |
0.9597081216 |
Site D |
0.9597081216 |
Compared to the results from the original example which is using the default value of dampingFactor
, the score values are closer to each other when using dampingFactor: 0.05
. Quicker convergence (six iterations) at the expense of information.
Personalised PageRank
Personalized PageRank is a variation of PageRank which is biased towards a set of sourceNodes
.
This variant of PageRank is often used as part of recommender systems.
The following examples show how to run PageRank centered around 'Site A'.
CALL Neo4j_Graph_Analytics.graph.page_rank('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'PAGES' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'PAGES',
'targetTable': 'PAGES'
}
}
},
'compute': {
'mutateProperty': 'score',
'maxIterations': 20,
'dampingFactor': 0.85,
'sourceNodes': ['Site A'],
'sourceNodesTable': 'PAGES'
},
'write': [{
'nodeLabel': 'PAGES',
'outputTable': 'PAGES_CENTRALITY',
'nodeProperty': 'score'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_83844b41641b48a8a2c547c14c4ff6d9 |
2025-06-25 10:08:14.987 |
2025-06-25 10:08:19.910 |
{ "page_rank_1": { "centralityDistribution": { "max": 0.3990230560302734, "mean": 0.12015484273433685, "min": 0.018903136253356934, "p50": 0.11220157146453857, "p75": 0.11220157146453857, "p90": 0.3990229368209839, "p95": 0.3990229368209839, "p99": 0.3990229368209839, "p999": 0.3990229368209839 }, "computeMillis": 77, "configuration": { "concurrency": 2, "dampingFactor": 0.85, "jobId": "3767d8d4-1087-4981-9d33-c16bdb0d8746", "logProgress": true, "maxIterations": 20, "mutateProperty": "score", "nodeLabels": ["*"], "relationshipTypes": ["*"], "scaler": "NONE", "sourceNodes": ["Site A"], "sourceNodesTable": "EXAMPLE_DB.DATA_SCHEMA.PAGES", "sudo": false, "tolerance": 1.000000000000000e-07 }, "didConverge": false, "mutateMillis": 4, "nodePropertiesWritten": 8, "postProcessingMillis": 68, "preProcessingMillis": 9, "ranIterations": 20 }, "project_1": { "graphName": "snowgraph", "nodeCount": 8, "nodeMillis": 135, "relationshipCount": 14, "relationshipMillis": 355, "totalMillis": 490 }, "write_node_property_1": { "exportMillis": 1714, "nodeLabel": "PAGES", "nodeProperty": "score", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY", "propertiesExported": 8 } } |
We can see that by setting the focus on Site A, it moves up in the rankings:
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY ORDER BY score DESC;
NODEID | SCORE |
---|---|
Home |
0.3990229044 |
Site A |
0.168903253 |
About |
0.1122015175 |
Product |
0.1122015175 |
Links |
0.1122015175 |
Site B |
0.01890325302 |
Site C |
0.01890325302 |
Site D |
0.01890325302 |
Biased Personalised PageRank
In GDS, personalized PageRank can also be run with a varying bias among the source nodes. Like regular personalized PageRank, this models a random walk that restarts at a specific set of source nodes. In the biased case, the likeliness of a restart (1-dampingFactor
) stays the same but the destination of the restart will be biased according to settings.
The following example shows how to run PageRank centered around 'Site A' and 'Site B', with twice as high bias for 'Site B' than 'Site A'. The biased source nodes are entered as a list of node-value pairs (lists).
CALL Neo4j_Graph_Analytics.graph.page_rank('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'PAGES' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'PAGES',
'targetTable': 'PAGES'
}
}
},
'compute': {
'mutateProperty': 'score',
'maxIterations': 20,
'dampingFactor': 0.85,
'sourceNodes': [['Site A', 1], ['Site B', 2]],
'sourceNodesTable': 'PAGES'
},
'write': [{
'nodeLabel': 'PAGES',
'outputTable': 'PAGES_CENTRALITY',
'nodeProperty': 'score'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_4c4c590a9dcb4df08a55d6e6e6f5e4c7 |
2025-06-25 10:14:10.288 |
2025-06-25 10:14:15.641 |
{ "page_rank_1": { "centralityDistribution": { "max": 1.1970748901367185, "mean": 0.3604651689529419, "min": 0.05670952796936035, "p50": 0.3366048336029053, "p75": 0.3366048336029053, "p90": 1.1970746517181396, "p95": 1.1970746517181396, "p99": 1.1970746517181396, "p999": 1.1970746517181396 }, "computeMillis": 66, "configuration": { "concurrency": 2, "dampingFactor": 0.85, "jobId": "09044aff-b2be-4a14-84ce-ce8f36a394a8", "logProgress": true, "maxIterations": 20, "mutateProperty": "score", "nodeLabels": ["*"], "relationshipTypes": ["*"], "scaler": "NONE", "sourceNodes": [["Site A",1],["Site B",2]], "sourceNodesTable": "EXAMPLE_DB.DATA_SCHEMA.PAGES", "sudo": false, "tolerance": 1.000000000000000e-07 }, "didConverge": false, "mutateMillis": 3, "nodePropertiesWritten": 8, "postProcessingMillis": 131, "preProcessingMillis": 14, "ranIterations": 20 }, "project_1": { "graphName": "snowgraph", "nodeCount": 8, "nodeMillis": 138, "relationshipCount": 14, "relationshipMillis": 323, "totalMillis": 461 }, "write_node_property_1": { "exportMillis": 2104, "nodeLabel": "PAGES", "nodeProperty": "score", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY", "propertiesExported": 8 } } |
We observe that, since B receives the bias, B is ranked much more highly than A, which in turn is ranked more highly than C and D:
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY ORDER BY score DESC;
NODEID | SCORE |
---|---|
Home |
1.197068713 |
Site B |
0.3567097591 |
About |
0.3366045524 |
Product |
0.3366045524 |
Links |
0.3366045524 |
Site A |
0.2067097591 |
Site C |
0.05670975905 |
Site D |
0.05670975905 |
Scaling centrality scores
To normalize the final scores as part of the algorithm execution, one can use the scaler
configuration parameter.
A description of all available scalers can be found in appendix: scalers.
Let’s look at it:
CALL Neo4j_Graph_Analytics.graph.page_rank('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'PAGES' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'PAGES',
'targetTable': 'PAGES'
}
}
},
'compute': {
'mutateProperty': 'score',
'scaler': 'Mean'
},
'write': [{
'nodeLabel': 'PAGES',
'outputTable': 'PAGES_CENTRALITY',
'nodeProperty': 'score'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_840d6ac0dfa245bb82456017a24d2b71 |
2025-06-24 13:47:43.484 |
2025-06-24 13:47:48.661 |
{ "page_rank_1": { "centralityDistribution": { "Error": "Unable to create histogram due to range of scores exceeding implementation limits." }, "computeMillis": 136, "configuration": { "concurrency": 2, "dampingFactor": 0.85, "jobId": "cdcb6b52-ab33-438b-8511-a3ac9a9fbe3a", "logProgress": true, "maxIterations": 20, "mutateProperty": "score", "nodeLabels": ["*"], "relationshipTypes": ["*"], "scaler": "MEAN", "sourceNodes": [], "sudo": false, "tolerance": 1.000000000000000e-07 }, "didConverge": false, "mutateMillis": 2, "nodePropertiesWritten": 8, "postProcessingMillis": 23, "preProcessingMillis": 7, "ranIterations": 20 }, "project_1": { "graphName": "snowgraph", "nodeCount": 8, "nodeMillis": 195, "relationshipCount": 14, "relationshipMillis": 399, "totalMillis": 594 }, "write_node_property_1": { "exportMillis": 1891, "nodeLabel": "PAGES", "nodeProperty": "score", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY", "propertiesExported": 8 } } |
As you can see in the output above, there are known limitations to recording probability distributions. It does not affect results.
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.PAGES_CENTRALITY ORDER BY score DESC;
NODEID | SCORE |
---|---|
Home |
0.7806713464 |
About |
0.03221442268 |
Product |
0.03221442268 |
Links |
0.03221442268 |
Site A |
-0.2193286536 |
Site B |
-0.2193286536 |
Site C |
-0.2193286536 |
Site D |
-0.2193286536 |
Comparing the results with the first example, we can see that the relative order of scores is the same, even if values have been scaled.