Leiden
Introduction
The Leiden algorithm is an algorithm for detecting communities in large networks. The algorithm separates nodes into disjoint communities so as to maximize a modularity score for each community. Modularity quantifies the quality of an assignment of nodes to communities, that is how densely connected nodes in a community are, compared to how connected they would be in a random network.
The Leiden algorithm is a hierarchical clustering algorithm, that recursively merges communities into single nodes by greedily optimizing the modularity and the process repeats in the condensed graph. It modifies the Louvain algorithm to address some of its shortcomings, namely the case where some of the communities found by Louvain are not well-connected. This is achieved by periodically randomly breaking down communities into smaller well-connected ones.
For more information on this algorithm, see:
Syntax
This section covers the syntax used to execute the Leiden algorithm.
CALL Neo4j_Graph_Analytics.graph.leiden(
'CPU_X64_XS', (1)
{
['defaultTablePrefix': '...',] (2)
'project': {...}, (3)
'compute': {...}, (4)
'write': {...} (5)
}
);
1 | Compute pool selector. |
2 | Optional prefix for table references. |
3 | Project config. |
4 | Compute config. |
5 | Write config. |
Name | Type | Default | Optional | Description |
---|---|---|---|---|
computePoolSelector |
String |
|
no |
The selector for the compute pool on which to run the Leiden job. |
configuration |
Map |
|
no |
Configuration for graph project, algorithm compute and result write back. |
The configuration map consists of the following three entries.
For more details on below Project configuration, refer to the Project documentation. |
Name | Type |
---|---|
nodeTables |
List of node tables. |
relationshipTables |
Map of relationship types to relationship tables. |
Name | Type | Default | Optional | Description |
---|---|---|---|---|
mutateProperty |
String |
|
yes |
The node property that will be written back to the Snowflake database. |
relationshipWeightProperty |
String |
|
yes |
Name of the relationship property to use as weights. If unspecified, the algorithm runs unweighted. |
seedProperty |
String |
|
yes |
Used to set the initial community for a node. The property value needs to be a non-negative number. |
maxLevels |
Integer |
|
yes |
The maximum number of levels in which the graph is clustered and then condensed. |
tolerance |
Float |
|
yes |
Minimum change in modularity between iterations. If the modularity changes less than the tolerance value, the result is considered stable and the algorithm returns. |
includeIntermediateCommunities |
Boolean |
|
yes |
Indicates whether to write intermediate communities. If set to false, only the final community is persisted. |
gamma |
Float |
|
yes |
Resolution parameter used when computing the modularity. Internally the value is divided by the number of relationships for an unweighted graph, or the sum of weights of all relationships otherwise. [1] |
theta |
Float |
|
yes |
Controls the randomness while breaking a community into smaller ones. |
1. Higher resolutions lead to more communities, while lower resolutions lead to fewer communities. |
For more details on below Write configuration, refer to the Write documentation. |
Name | Type | Default | Optional | Description |
---|---|---|---|---|
nodeProperty |
String |
|
yes |
The node property that will be written back to the Snowflake database. |
Examples
In this section we will show examples of running the Leiden community detection algorithm on a concrete graph. The intention is to illustrate what the results look like and to provide a guide in how to make use of the algorithm in a real setting. We will do this on a small social network graph of a handful of nodes connected in a particular pattern. The example graph looks like this:
CREATE OR REPLACE TABLE EXAMPLE_DB.DATA_SCHEMA.USERS (NODEID VARCHAR, SEED NUMBER);
INSERT INTO EXAMPLE_DB.DATA_SCHEMA.USERS VALUES
('Alice', 42),
('Bridget', 42),
('Charles', 42),
('Doug', NULL),
('Mark', NULL),
('Michael', NULL);
CREATE OR REPLACE TABLE EXAMPLE_DB.DATA_SCHEMA.LINKS (SOURCENODEID VARCHAR, TARGETNODEID VARCHAR, WEIGHT FLOAT);
INSERT INTO EXAMPLE_DB.DATA_SCHEMA.LINKS VALUES
('Alice', 'Bridget', 1),
('Alice', 'Charles', 1),
('Charles', 'Bridget', 1),
('Alice', 'Doug', 5),
('Mark', 'Doug', 1),
('Mark', 'Michael', 1),
('Michael', 'Mark', 1);
This graph has two clusters of Users, that are closely connected.
Between those clusters there is one single edge.
The relationships that connect the nodes in each component have a property weight
which determines the strength of the relationship.
We load the LINK
relationships with orientation set to UNDIRECTED
as this works best with the Leiden algorithm.
With the node and relationship tables in Snowflake we can now project it as part of an algorithm job. In the following examples we will demonstrate using the Leiden algorithm on this graph.
Run job
Running a Leiden job involves the three steps: Project, Compute and Write.
To run the query, there is a required setup of grants for the application, your consumer role and your environment. Please see the Getting started page for more on this.
We also assume that the application name is the default Neo4j_Graph_Analytics. If you chose a different app name during installation, please replace it with that.
CALL Neo4j_Graph_Analytics.graph.leiden('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'USERS' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'USERS',
'targetTable': 'USERS',
'orientation': 'UNDIRECTED'
}
}
},
'compute': {
'randomSeed': 19
},
'write': [{
'nodeLabel': 'USERS',
'outputTable': 'USERS_COMMUNITY'
}]
});
The returned result contains information about the job execution and result distribution. Additionally, the community ID for each of the nodes has been written back to the Snowflake database. We can query it like so:
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.USERS_COMMUNITY;
NODEID | COMMUNITY |
---|---|
Alice |
2 |
Bridget |
2 |
Charles |
2 |
Doug |
5 |
Mark |
5 |
Michael |
5 |
Except for the random seed, we use default values for the procedure configuration parameters.
The maxLevels
is set to 10, and the gamma
, theta
parameters are set to 1.0 and 0.01 respectively.
Weighted
The Leiden algorithm can also run on weighted graphs, taking the given relationship weights into concern when calculating the modularity.
CALL Neo4j_Graph_Analytics.graph.leiden('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'USERS' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'USERS',
'targetTable': 'USERS',
'orientation': 'UNDIRECTED'
}
}
},
'compute': {
'randomSeed': 19,
'relationshipWeightProperty': 'WEIGHT'
},
'write': [{
'nodeLabel': 'USERS',
'outputTable': 'USERS_COMMUNITY'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_7783bee73d084df19e254550b9a3a186 |
2025-07-16 08:56:33.449 |
2025-07-16 08:56:38.060 |
{ "leiden_1": { "communityCount": 3, "communityDistribution": { "max": 2, "mean": 2, "min": 2, "p1": 2, "p10": 2, "p25": 2, "p5": 2, "p50": 2, "p75": 2, "p90": 2, "p95": 2, "p99": 2, "p999": 2 }, "computeMillis": 71, "configuration": { "concurrency": 6, "consecutiveIds": false, "gamma": 1, "includeIntermediateCommunities": false, "jobId": "a55c6ad2-1567-4a71-812a-3a8651da2575", "logProgress": true, "maxLevels": 10, "mutateProperty": "community", "nodeLabels": [ "*" ], "randomSeed": 19, "relationshipTypes": [ "*" ], "relationshipWeightProperty": "WEIGHT", "seedProperty": null, "sudo": false, "theta": 0.01, "tolerance": 1.000000000000000e-04 }, "didConverge": true, "modularities": [ 0.2933884297520661 ], "modularity": 0.2933884297520661, "mutateMillis": 2, "nodeCount": 6, "nodePropertiesWritten": 6, "postProcessingMillis": 30, "preProcessingMillis": 8, "ranLevels": 1 }, "project_1": { "graphName": "snowgraph", "nodeCount": 6, "nodeMillis": 138, "relationshipCount": 14, "relationshipMillis": 303, "totalMillis": 441 }, "write_node_property_1": { "copyIntoTableMillis": 1109, "exportMillis": 1826, "nodeLabel": "USERS", "nodeProperty": "community", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.USERS_COMMUNITY", "propertiesExported": 6, "stageUploadMillis": 518 } } |
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.USERS_COMMUNITY;
NODEID | COMMUNITY_ID |
---|---|
Alice |
3 |
Bridget |
2 |
Charles |
2 |
Doug |
3 |
Mark |
5 |
Michael |
5 |
Using the weighted relationships, we see that Alice
and Doug
have formed their own community, as their link is much stronger than all the others.
Seeded
It is possible to run the Leiden algorithm incrementally, by providing a seed property. If specified, the seed property provides an initial community mapping for a subset of the loaded nodes. The algorithm will try to keep the seeded community IDs.
CALL Neo4j_Graph_Analytics.graph.leiden('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'USERS' ],
'relationshipTables': {
'LINKS': {
'sourceTable': 'USERS',
'targetTable': 'USERS',
'orientation': 'UNDIRECTED'
}
}
},
'compute': {
'randomSeed': 19,
'seedProperty': 'SEED'
},
'write': [{
'nodeLabel': 'USERS',
'outputTable': 'USERS_COMMUNITY'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_79891de200694d55a9b6822a5a9c8993 |
2025-07-16 09:25:30.436 |
2025-07-16 09:25:35.139 |
{ "leiden_1": { "communityCount": 2, "communityDistribution": { "max": 3, "mean": 3, "min": 3, "p1": 3, "p10": 3, "p25": 3, "p5": 3, "p50": 3, "p75": 3, "p90": 3, "p95": 3, "p99": 3, "p999": 3 }, "computeMillis": 48, "configuration": { "concurrency": 6, "consecutiveIds": false, "gamma": 1, "includeIntermediateCommunities": false, "jobId": "3f7cf812-cb71-4312-9662-7e6a3a1ec9d5", "logProgress": true, "maxLevels": 10, "mutateProperty": "community", "nodeLabels": [ "*" ], "randomSeed": 19, "relationshipTypes": [ "*" ], "seedProperty": "SEED", "sudo": false, "theta": 0.01, "tolerance": 1.000000000000000e-04 }, "didConverge": true, "modularities": [ 0.3571428571428571 ], "modularity": 0.3571428571428571, "mutateMillis": 1, "nodeCount": 6, "nodePropertiesWritten": 6, "postProcessingMillis": 20, "preProcessingMillis": 6, "ranLevels": 1 }, "project_1": { "graphName": "snowgraph", "nodeCount": 6, "nodeMillis": 136, "relationshipCount": 14, "relationshipMillis": 342, "totalMillis": 478 }, "write_node_property_1": { "copyIntoTableMillis": 978, "exportMillis": 1730, "nodeLabel": "USERS", "nodeProperty": "community", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.USERS_COMMUNITY", "propertiesExported": 6, "stageUploadMillis": 536 } } |
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.USERS_COMMUNITY;
NODEID | COMMUNITY_ID |
---|---|
Alice |
42 |
Bridget |
42 |
Charles |
42 |
Doug |
45 |
Mark |
45 |
Michael |
45 |
As can be seen, using the seeded graph, node Alice
keeps its initial community ID of 42
.
The other community has been assigned a new community ID which is guaranteed to be larger than the largest seeded community ID.
Using intermediate communities
As described before, Leiden is a hierarchical clustering algorithm. That means that after every clustering step all nodes that belong to the same cluster are reduced to a single node. Relationships between nodes of the same cluster become self-relationships, relationships to nodes of other clusters connect to the clusters representative. This condensed graph is then used to run the next level of clustering. The process is repeated until the clusters are stable.
In order to demonstrate this iterative behavior, we need to construct a more complex graph.
CREATE OR REPLACE TABLE EXAMPLE_DB.DATA_SCHEMA.NODES (NODEID STRING);
INSERT INTO EXAMPLE_DB.DATA_SCHEMA.NODES VALUES
('a'),
('b'),
('c'),
('d'),
('e'),
('f'),
('g'),
('h'),
('i'),
('j'),
('k'),
('l'),
('m'),
('n'),
('x');
CREATE OR REPLACE TABLE EXAMPLE_DB.DATA_SCHEMA.TYPES (SOURCENODEID STRING, TARGETNODEID STRING);
INSERT INTO EXAMPLE_DB.DATA_SCHEMA.TYPES VALUES
('a', 'b'),
('a', 'd'),
('a', 'f'),
('b', 'd'),
('b', 'x'),
('b', 'g'),
('b', 'e'),
('c', 'x'),
('c', 'f'),
('d', 'k'),
('e', 'x'),
('e', 'f'),
('e', 'h'),
('f', 'g'),
('g', 'h'),
('h', 'i'),
('h', 'j'),
('i', 'k'),
('j', 'k'),
('j', 'm'),
('j', 'n'),
('k', 'm'),
('k', 'l'),
('l', 'n'),
('m', 'n');
Now we can see the iterative flow of the algorithm:
CALL Neo4j_Graph_Analytics.graph.leiden('CPU_X64_XS', {
'defaultTablePrefix': 'EXAMPLE_DB.DATA_SCHEMA',
'project': {
'nodeTables': [ 'NODES' ],
'relationshipTables': {
'TYPES': {
'sourceTable': 'NODES',
'targetTable': 'NODES',
'orientation': 'UNDIRECTED'
}
}
},
'compute': {
'randomSeed': 23,
'includeIntermediateCommunities': true
},
'write': [{
'nodeLabel': 'NODES',
'outputTable': 'NODES_INTERMEDIATE_COMMUNITY'
}]
});
JOB_ID | JOB_START | JOB_END | JOB_RESULT |
---|---|---|---|
job_d2aa3973d9744157b2a6be3cc30a3ee6 |
2025-07-16 09:09:59.400 |
2025-07-16 09:10:05.025 |
{ "leiden_1": { "communityCount": 3, "communityDistribution": { "max": 7, "mean": 5, "min": 3, "p1": 3, "p10": 3, "p25": 3, "p5": 3, "p50": 5, "p75": 7, "p90": 7, "p95": 7, "p99": 7, "p999": 7 }, "computeMillis": 108, "configuration": { "concurrency": 6, "consecutiveIds": false, "gamma": 1, "includeIntermediateCommunities": true, "jobId": "b6d95032-1a8c-41e9-91d9-4054aa328f9b", "logProgress": true, "maxLevels": 10, "mutateProperty": "community", "nodeLabels": [ "*" ], "randomSeed": 19, "relationshipTypes": [ "*" ], "seedProperty": null, "sudo": false, "theta": 0.01, "tolerance": 1.000000000000000e-04 }, "didConverge": true, "modularities": [ 0.37599999999999995, 0.3816 ], "modularity": 0.3816, "mutateMillis": 2, "nodeCount": 15, "nodePropertiesWritten": 15, "postProcessingMillis": 18, "preProcessingMillis": 8, "ranLevels": 2 }, "project_1": { "graphName": "snowgraph", "nodeCount": 15, "nodeMillis": 393, "relationshipCount": 50, "relationshipMillis": 529, "totalMillis": 922 }, "write_node_property_1": { "copyIntoTableMillis": 911, "exportMillis": 1767, "nodeLabel": "NODES", "nodeProperty": "community", "outputTable": "EXAMPLE_DB.DATA_SCHEMA.NODES_INTERMEDIATE_COMMUNITY", "propertiesExported": 15, "stageUploadMillis": 582 } } |
SELECT * FROM EXAMPLE_DB.DATA_SCHEMA.NODES_INTERMEDIATE_COMMUNITY;
NODEID | INTERMEDIATE_COMMUNITIES |
---|---|
a |
[3, 1] |
b |
[3, 1] |
c |
[14, 1] |
d |
[3, 1] |
e |
[14, 1] |
f |
[14, 1] |
g |
[8, 2] |
h |
[8, 2] |
i |
[8, 2] |
j |
[12, 3] |
k |
[12, 3] |
l |
[12, 3] |
m |
[12, 3] |
n |
[12, 3] |
x |
[14, 1] |
In this example graph, after the first iteration we see 4 clusters, which in the second iteration are reduced to three.