Qdrant

Here is a list of all available Qdrant procedures, note that the list and the signature procedures are consistent with the others, like the ChromaDB ones:

name description

apoc.vectordb.qdrant.createCollection(hostOrKey, collection, similarity, size, $config)

Creates a collection, with the name specified in the 2nd parameter, and with the specified similarity and size. The default endpoint is <hostOrKey param>/collections/<collection param>.

apoc.vectordb.qdrant.deleteCollection(hostOrKey, collection, $config)

Deletes a collection with the name specified in the 2nd parameter. The default endpoint is <hostOrKey param>/collections/<collection param>.

apoc.vectordb.qdrant.upsert(hostOrKey, collection, vectors, $config)

Upserts, in the collection with the name specified in the 2nd parameter, the vectors [{id: 'id', vector: '<vectorDb>', medatada: '<metadata>'}]. The default endpoint is <hostOrKey param>/collections/<collection param>/points.

apoc.vectordb.qdrant.delete(hostOrKey, collection, ids, $config)

Deletes the vectors with the specified ids. The default endpoint is <hostOrKey param>/collections/<collection param>/points/delete.

apoc.vectordb.qdrant.get(hostOrKey, collection, ids, $config)

Gets the vectors with the specified ids. The default endpoint is <hostOrKey param>/collections/<collection param>/points.

apoc.vectordb.qdrant.getAndUpdate(hostOrKey, collection, ids, $config)

Gets the vectors with the specified ids, and optionally creates/updates neo4j entities. The default endpoint is <hostOrKey param>/collections/<collection param>/points.

apoc.vectordb.qdrant.query(hostOrKey, collection, vector, filter, limit, $config)

Retrieve closest vectors from the defined vector, limit of results, in the collection with the name specified in the 2nd parameter. The default endpoint is <hostOrKey param>/collections/<collection param>/points/search.

apoc.vectordb.qdrant.queryAndUpdate(hostOrKey, collection, vector, filter, limit, $config)

Retrieve closest vectors from the defined vector, limit of results, in the collection with the name specified in the 2nd parameter, and optionally creates/updates neo4j entities. The default endpoint is <hostOrKey param>/collections/<collection param>/points/search.

where the 1st parameter can be a key defined by the apoc config apoc.qdrant.<key>.host=myHost. With hostOrKey=null, the default is 'http://localhost:6333'.

Examples

Create a collection (it leverages this API)
CALL apoc.vectordb.qdrant.createCollection($hostOrKey, 'test_collection', 'Cosine', 4, {<optional config>})
Table 1. Example results
result time status

true

0.094182458

"ok"

Delete a collection (it leverages this API)
CALL apoc.vectordb.qdrant.deleteCollection($hostOrKey, 'test_collection', {<optional config>})
Table 2. Example results
result time status

true

0.094182458

"ok"

Upsert vectors (it leverages this API)
CALL apoc.vectordb.qdrant.upsert($hostOrKey, 'test_collection',
    [
        {id: 1, vector: [0.05, 0.61, 0.76, 0.74], metadata: {city: "Berlin", foo: "one"}},
        {id: 2, vector: [0.19, 0.81, 0.75, 0.11], metadata: {city: "London", foo: "two"}}
    ],
    {<optional config>})
Table 3. Example results
result time status

{"result": { "operation_id": 0, "status": "acknowledged" } }

0.094182458

"ok"

Get vectors (it leverages this API)
CALL apoc.vectordb.qdrant.get($hostOrKey, 'test_collection', [1,2], {<optional config>})
Table 4. Example results
score metadata id vector text entity

null

{city: "Berlin", foo: "one"}

null

null

null

null

null

{city: "Berlin", foo: "two"}

null

null

null

null

Get vectors with {allResults: true}
CALL apoc.vectordb.qdrant.get($hostOrKey, 'test_collection', [1,2], {allResults: true, <optional config>})
Table 5. Example results
score metadata id vector text entity

null

{city: "Berlin", foo: "one"}

1

[…​]

null

null

null

{city: "Berlin", foo: "two"}

2

[…​]

null

null

Query vectors (it leverages this API)
CALL apoc.vectordb.qdrant.query($hostOrKey,
    'test_collection',
    [0.2, 0.1, 0.9, 0.7],
    { must:
        [ { key: "city", match: { value: "London" } } ]
    },
    5,
    {allResults: true, <optional config>})
Table 6. Example results
score metadata id vector text entity

1,

{city: "Berlin", foo: "one"}

1

[…​]

null

null

0.1

{city: "Berlin", foo: "two"}

2

[…​]

null

null

We can define a mapping, to fetch the associated nodes and relationships and optionally create them, by leveraging the vector metadata.

For example, if we have created 2 vectors with the above upsert procedures, we can populate some existing nodes (i.e. (:Test {myId: 'one'}) and (:Test {myId: 'two'})):

CALL apoc.vectordb.qdrant.query($hostOrKey, 'test_collection',
    [0.2, 0.1, 0.9, 0.7],
    {},
    5,
    { mapping: {
            embeddingKey: "vect",
            nodeLabel: "Test",
            entityKey: "myId",
            metadataKey: "foo"
        }
    })

which populates the two nodes as: (:Test {myId: 'one', city: 'Berlin', vect: [vector1]}) and (:Test {myId: 'two', city: 'London', vect: [vector2]}), which will be returned in the entity column result.

Or else, we can create a node if not exists, via create: true:

CALL apoc.vectordb.qdrant.query($hostOrKey, 'test_collection',
    [0.2, 0.1, 0.9, 0.7],
    {},
    5,
    { mapping: {
            create: true,
            embeddingKey: "vect",
            nodeLabel: "Test",
            entityKey: "myId",
            metadataKey: "foo"
        }
    })

which creates and 2 new nodes as above.

Or, we can populate an existing relationship (i.e. (:Start)-[:TEST {myId: 'one'}]→(:End) and (:Start)-[:TEST {myId: 'two'}]→(:End)):

CALL apoc.vectordb.qdrant.query($hostOrKey, 'test_collection',
    [0.2, 0.1, 0.9, 0.7],
    {},
    5,
    { mapping: {
            embeddingKey: "vect",
            relType: "TEST",
            entityKey: "myId",
            metadataKey: "foo"
        }
    })

which populates the two relationships as: ()-[:TEST {myId: 'one', city: 'Berlin', vect: [vector1]}]-() and ()-[:TEST {myId: 'two', city: 'London', vect: [vector2]}]-(), which will be returned in the entity column result.

To optimize performances, we can choose what to YIELD with the apoc.vectordb.qdrant.query and the apoc.vectordb.qdrant.get procedures.

For example, by executing a CALL apoc.vectordb.qdrant.query(…​) YIELD metadata, score, id, the RestAPI request will have an {"with_payload": false, "with_vectors": false}, so that we do not return the other values that we do not need.

It is possible to execute vector db procedures together with the apoc.ml.rag as follow:

CALL apoc.vectordb.qdrant.getAndUpdate($host, $collection, [<id1>, <id2>], $conf) YIELD node, metadata, id, vector
WITH collect(node) as paths
CALL apoc.ml.rag(paths, $attributes, $question, $confPrompt) YIELD value
RETURN value

which returns a string that answers the $question by leveraging the embeddings of the db vector.

Delete vectors (it leverages this API)
CALL apoc.vectordb.qdrant.delete($hostOrKey, 'test_collection', [1,2], {<optional config>})
Table 7. Example results
result time status

{"result": { "operation_id": 2, "status": "acknowledged" } }

0.094182458

"ok"