Qdrant
Here is a list of all available Qdrant procedures, note that the list and the signature procedures are consistent with the others, like the ChromaDB ones:
name | description |
---|---|
apoc.vectordb.qdrant.createCollection(hostOrKey, collection, similarity, size, $config) |
Creates a collection, with the name specified in the 2nd parameter, and with the specified |
apoc.vectordb.qdrant.deleteCollection(hostOrKey, collection, $config) |
Deletes a collection with the name specified in the 2nd parameter.
The default endpoint is |
apoc.vectordb.qdrant.upsert(hostOrKey, collection, vectors, $config) |
Upserts, in the collection with the name specified in the 2nd parameter, the vectors [{id: 'id', vector: '<vectorDb>', medatada: '<metadata>'}].
The default endpoint is |
apoc.vectordb.qdrant.delete(hostOrKey, collection, ids, $config) |
Deletes the vectors with the specified |
apoc.vectordb.qdrant.get(hostOrKey, collection, ids, $config) |
Gets the vectors with the specified |
apoc.vectordb.qdrant.getAndUpdate(hostOrKey, collection, ids, $config) |
Gets the vectors with the specified |
apoc.vectordb.qdrant.query(hostOrKey, collection, vector, filter, limit, $config) |
Retrieve closest vectors from the defined |
apoc.vectordb.qdrant.queryAndUpdate(hostOrKey, collection, vector, filter, limit, $config) |
Retrieve closest vectors from the defined |
where the 1st parameter can be a key defined by the apoc config apoc.qdrant.<key>.host=myHost
.
With hostOrKey=null, the default is 'http://localhost:6333'.
Examples
CALL apoc.vectordb.qdrant.createCollection($hostOrKey, 'test_collection', 'Cosine', 4, {<optional config>})
result | time | status |
---|---|---|
true |
0.094182458 |
"ok" |
CALL apoc.vectordb.qdrant.deleteCollection($hostOrKey, 'test_collection', {<optional config>})
result | time | status |
---|---|---|
true |
0.094182458 |
"ok" |
CALL apoc.vectordb.qdrant.upsert($hostOrKey, 'test_collection',
[
{id: 1, vector: [0.05, 0.61, 0.76, 0.74], metadata: {city: "Berlin", foo: "one"}},
{id: 2, vector: [0.19, 0.81, 0.75, 0.11], metadata: {city: "London", foo: "two"}}
],
{<optional config>})
result | time | status |
---|---|---|
{"result": { "operation_id": 0, "status": "acknowledged" } } |
0.094182458 |
"ok" |
CALL apoc.vectordb.qdrant.get($hostOrKey, 'test_collection', [1,2], {<optional config>})
score | metadata | id | vector | text | entity |
---|---|---|---|---|---|
null |
{city: "Berlin", foo: "one"} |
null |
null |
null |
null |
null |
{city: "Berlin", foo: "two"} |
null |
null |
null |
null |
{allResults: true}
CALL apoc.vectordb.qdrant.get($hostOrKey, 'test_collection', [1,2], {allResults: true, <optional config>})
score | metadata | id | vector | text | entity |
---|---|---|---|---|---|
null |
{city: "Berlin", foo: "one"} |
1 |
[…] |
null |
null |
null |
{city: "Berlin", foo: "two"} |
2 |
[…] |
null |
null |
CALL apoc.vectordb.qdrant.query($hostOrKey,
'test_collection',
[0.2, 0.1, 0.9, 0.7],
{ must:
[ { key: "city", match: { value: "London" } } ]
},
5,
{allResults: true, <optional config>})
score | metadata | id | vector | text | entity |
---|---|---|---|---|---|
1, |
{city: "Berlin", foo: "one"} |
1 |
[…] |
null |
null |
0.1 |
{city: "Berlin", foo: "two"} |
2 |
[…] |
null |
null |
We can define a mapping, to fetch the associated nodes and relationships and optionally create them, by leveraging the vector metadata.
For example, if we have created 2 vectors with the above upsert procedures,
we can populate some existing nodes (i.e. (:Test {myId: 'one'})
and (:Test {myId: 'two'})
):
CALL apoc.vectordb.qdrant.query($hostOrKey, 'test_collection',
[0.2, 0.1, 0.9, 0.7],
{},
5,
{ mapping: {
embeddingKey: "vect",
nodeLabel: "Test",
entityKey: "myId",
metadataKey: "foo"
}
})
which populates the two nodes as: (:Test {myId: 'one', city: 'Berlin', vect: [vector1]})
and (:Test {myId: 'two', city: 'London', vect: [vector2]})
,
which will be returned in the entity
column result.
Or else, we can create a node if not exists, via create: true
:
CALL apoc.vectordb.qdrant.query($hostOrKey, 'test_collection',
[0.2, 0.1, 0.9, 0.7],
{},
5,
{ mapping: {
create: true,
embeddingKey: "vect",
nodeLabel: "Test",
entityKey: "myId",
metadataKey: "foo"
}
})
which creates and 2 new nodes as above.
Or, we can populate an existing relationship (i.e. (:Start)-[:TEST {myId: 'one'}]→(:End)
and (:Start)-[:TEST {myId: 'two'}]→(:End)
):
CALL apoc.vectordb.qdrant.query($hostOrKey, 'test_collection',
[0.2, 0.1, 0.9, 0.7],
{},
5,
{ mapping: {
embeddingKey: "vect",
relType: "TEST",
entityKey: "myId",
metadataKey: "foo"
}
})
which populates the two relationships as: ()-[:TEST {myId: 'one', city: 'Berlin', vect: [vector1]}]-()
and ()-[:TEST {myId: 'two', city: 'London', vect: [vector2]}]-()
,
which will be returned in the entity
column result.
To optimize performances, we can choose what to For example, by executing a |
It is possible to execute vector db procedures together with the apoc.ml.rag as follow:
CALL apoc.vectordb.qdrant.getAndUpdate($host, $collection, [<id1>, <id2>], $conf) YIELD node, metadata, id, vector
WITH collect(node) as paths
CALL apoc.ml.rag(paths, $attributes, $question, $confPrompt) YIELD value
RETURN value
which returns a string that answers the $question
by leveraging the embeddings of the db vector.
CALL apoc.vectordb.qdrant.delete($hostOrKey, 'test_collection', [1,2], {<optional config>})
result | time | status |
---|---|---|
{"result": { "operation_id": 2, "status": "acknowledged" } } |
0.094182458 |
"ok" |