

A214312


a(n) is the number of all fourcolor bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 4.


4



3, 120, 2040, 21420, 183330, 1320480, 8691480, 52727400, 303958710, 1674472800, 8928735816, 46280581620, 234611247780, 1166708558400, 5710351190400, 27565250985360, 131495088522060, 620771489730000, 2903870526350640, 13473567673441260, 62061657617625204, 283995655732351200
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

4,1


COMMENTS

This is the fourth column (m=4) of triangle A214306.
Each 4 part partition of n, with the parts written in nonincreasing order, defines a color signature. For a given color signature, say [p[1], p[2], p[3], p[4]], with p[1] >= p[2] >= p[3] >= p[4] >= 1, there are A213941(n,k)= A035206(n,k)*A213939(n,k) bracelets if this signature corresponds (with the order of the parts reversed) to the kth partition of n in AbramowitzStegun (ASt) order. See A213941 for more details. Here all p(n,4)= A008284(n,4) partitions of n with 4 parts are considered. The color repertoire for a bracelet with n beads is [c[1], ..., c[n]].
Compare this with A032275 where also bracelets with less than four colors are included, and the color repertoire is only [c[1], c[2], c[3], c[4]] for all n.


LINKS

Andrew Howroyd, Table of n, a(n) for n = 4..100


FORMULA

a(n) = A214306(n,4), n >= 4.
a(n) = sum(A213941(n,k),k = A214314(n,4) .. (A214314(n,4)  1 + A008284(n,4))), n >= 4.
a(n) = binomial(n,4) * A056344(n).  Andrew Howroyd, Mar 25 2017


EXAMPLE

a(5) = A213941(5,6) = 120 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11234, 11243, 11324, 12134, 13124 and 14123, all six taken cyclically, each representing a class of order A035206(5,6) = 20 (if all 5 colors are used). For example, cyclic(11342) becomes equivalent to cyclic(11243) by turning over or reflection. The multiplicity 20 depends only on the color signature.


MATHEMATICA

t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
a56344[n_, k_] := Sum[(1)^i*Binomial[k, i]*t[n, k  i], {i, 0, k  1}];
a[n_] := Binomial[n, 4]*a56344[n, 4];
Table[a[n], {n, 4, 25}] (* JeanFrançois Alcover, Jul 02 2018, after Andrew Howroyd *)


CROSSREFS

Cf. A213941, A214306, A214309 (m=4, representative bracelets), A214313 (m=5).
Sequence in context: A316445 A316127 A317433 * A343831 A185554 A134230
Adjacent sequences: A214309 A214310 A214311 * A214313 A214314 A214315


KEYWORD

nonn


AUTHOR

Wolfdieter Lang, Jul 31 2012


STATUS

approved



