Free Ebook — Register Now! Graph Algorithms: Practical Examples in Apache Spark and Neo4j

Graph Algorithms: Practical Examples in Apache Spark and Neo4j

Specs

By Mark Needham & Amy Hodler

Print Length: 300 pages

Available Device Formats: PDF, iBooks, Kindle

Summary

Register now for your copy of the O’Reilly book, Graph Algorithms: Practical Examples in Apache Spark and Neo4j by Mark Needham and Amy E. Hodler. You’ll receive a link to download an electronic version as soon as it’s available this spring.

Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value – from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions.

Register to Download O'Reilly's Graph Algorithms for Free!

We walk you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j. We include sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality and community detection. Read this book to:

  • Learn how graph analytics vary from conventional statistical analysis
  • Understand how classic graph algorithms work and how they are applied
  • Dive into popular algorithms like PageRank, Label Propagation and Louvain to find out how subtle parameters impact results
  • Get guidance on which algorithms to use for different types of questions
  • Explore algorithm examples with working code and sample datasets for both Spark and Neo4j
  • See how connected feature extraction increases machine learning accuracy and precision
  • Walk through creating an ML workflow for link prediction combining Neo4j and Spark

Quotation

Discover how graph algorithms help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models.

Graph Algorithms: Practical Examples in Apache Spark and Neo4j