Graph Algorithms: Practical Examples in Apache Spark and Neo4j


By Mark Needham & Amy Hodler

By O'Reilly Media

Print Length: 300 pages

Available Formats: PDF - EN US, iBooks, Kindle


Register now for your copy of the O’Reilly book, Graph Algorithms: Practical Examples in Apache Spark and Neo4j by Mark Needham and Amy E. Hodler.

Whether you are trying to build dynamic network models or forecast real-world behavior, this book demonstrates how graph algorithms deliver value – from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions.

Register to Download O'Reilly's Graph Algorithms for Free!

We walk you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j. We include sample code and tips for over 20 practical graph algorithms that cover importance through centrality, community detection and optimal pathfinding. Read this book to:

  • Learn how graph analytics vary from conventional statistical analysis
  • Understand how classic graph algorithms work and how they are applied
  • Dive into popular algorithms like PageRank, Label Propagation and Louvain to find out how subtle parameters impact results
  • Get guidance on which algorithms to use for different types of questions
  • Explore algorithm examples with working code and sample datasets for both Apache Spark and Neo4j
  • See how connected feature extraction increases machine learning accuracy and precision
  • Walk through creating an ML workflow for link prediction combining Neo4j and Apache Spark


Discover how graph algorithms help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models.

Graph Algorithms: Practical Examples in Apache Spark and Neo4j