Neo4j Co-Founder and GraphConnect speaker discusses the role of Graph databases in the future of finance

Originally posted on Wired.com Written by CEO of Neo Technology, Emil Eifrem At first glance, the idea that the banking or finance sector could learn a trick or two from the online dating industry is laughable. After all, while the former is heavily regulated, deeply complex and integral to our economy; the latter is frivolous by comparison. Dating, as is often said, is a numbers game! And organizations such as Match.com, eHarmony and Zoosk rely on very sophisticated technology as they sift through vast customer bases to create the most compatible couples. Specially, they rely on data to build the most nuanced portraits of their members that they can, so they can find the best matches. This is a business-critical activity for dating sites — the more successful the matching, the better revenues will be. One of the ways they do this is through graph databases. These differ from relational databases — as conventional business databases are called — as they specialize in identifying the relationships between multiple data points. This means they can query and display connections between people, preferences and interests very quickly.

Applying Dating Insights to the Financial Sector

So where do financial institutions come in? Dating sites have put graph databases to such effective use because they are very good at modelling social relationships, and it turns out that understanding people’s relationships is a far better indicator of a match than a purely statistical analysis of their tastes and interests. The same is also true of financial fraud. The finance and banking sector lose billions of dollars each year as a result of fraud. While security measure such as the Address Verification Service and online tools such as Verified by Visa do help prevent some losses, fraudsters are becoming increasingly sophisticated in their approach. Over the last few years “First-Party”fraud has become a serious threat to banking — and it is very difficult to detect using standard methods. The fraudsters behave very similarly to legitimate customers, right up until the moment they clear their accounts and disappear. One of the features of first-party fraud is the exponential relationship between the number of individuals involved and the overall currency value being stolen. For example, 10 fraudsters can create 100 false identities sharing 10 elements between them (name, date of birth, phone number, address etc.). It is easy for a small group of fraudsters to use these elements to invent identities which to banks look utterly genuine. The ability to maximize the “take” by involving more people makes first party fraud particularly attractive to organized crime. The involvement of networks of individuals actually makes the job of investigation easier, however.

The ‘Social Network’ Analysis

Graph databases allow financial institutions to identify these fraud rings through connected “social network” analysis. This involves exploring and identifying any connections between customers before looking at their spending patterns. These operations are very difficult for conventional bank databases to explore as the relational database technology they are built in is designed to identify values, rather than explore relationships within the data. Importantly, taking new insights from the connections between data does not necessarily require gathering new data. Instead, by reframing the issue within a graph database financial institutions are able to flag advanced fraud scenarios as they are happening, rather than after the fact. It therefore follows that the very same “social graphs” that dating sites use to find matches between people, also represent a significant advance in the fight back against fraud, where traditional methods fall short. In the same way that graph databases outperform their relational counterparts in mapping out social networks, they can also be put to work in other contexts, too – as recommendation engines, supporting complex logistics or business processes, or as customer relationship management tools. From fraud rings and educated criminals operating on their own to lonely-hearts searching for love — graph databases provide a unique ability to discover new patterns within hugely complex volumes of data, in real time. Ultimately, in either case it can save the businesses time and money and offer a competitive advantage — something that any bank is sure to love.

GraphConnect 2014

Emil Eifrem is founder of the Neo4j open source graph database project. He will be speaking on the subject at GraphConnect 2014, the world’s only conference focused on the topic of graph databases. It will be held on October 22 in San Francisco, and will feature speakers from Neo Technology, eBay, CrunchBase, Elementum, Polyvore, ConocoPhillips and more. Visit GraphConnect.com for more information. Want to learn more about graph databases? Click below to get your free copy of O’Reilly’s Graph Databases ebook and discover how to use graph technologies for your application today. Download My Ebook

 

Keywords:  


About the Author

Greta Workman , Neo4j

Greta Workman Image

Greta Workman has been a part of the Neo4j team for over four years. She’s enjoyed watching the graph community grow through events like GraphConnect which has more than doubled during her time at Neo4j. She currently oversees field marketing for the eastern half of the U.S. In her spare time, she enjoys solving the daily New York Times crossword puzzle and watching University of Kentucky basketball.


1 Comment

Titi says:

“the more successful the matching, the better revenues will be. ” Well It is a bit more nuanced. OD sites gain from subscriptions and (usually) people cancel theirs when they find a mate. So in reality the less successful the matching strategy the more money the site makes. However they must keep it looking as if it is successful or people will go look for alternatives. It’s a very careful balancing act between real and perceived effectiveness, marketing and pr magic and obfuscation. However I am sure they leverage the power of graphs for that too…

Leave a Reply

Your email address will not be published. Required fields are marked *

Subscribe

Upcoming Event

 


Have a Graph Question?

Stack Overflow
Community Forums
Contact Us

Share your Graph Story?

Email us: content@neo4j.com